
Kentaro Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3930007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of hydrogen-induced hardening in pure nickel and in a copper–nickel alloy analyzed by micro Vickers hardness testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140580.	5.6	10
2	Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter. International Journal of Fatigue, 2021, 146, 106138.	5.7	126
3	Interpretation of complex, tensile-fracture phenomena in precipitation-hardened, martensitic stainless steels, 17-4PH, in presence of hydrogen. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141717.	5.6	11
4	The effect of the Ni/Cu ratio on H-induced ductility loss and its mechanism in Cu–Ni binary alloy system. International Journal of Hydrogen Energy, 2021, 46, 39577-39589.	7.1	3
5	Fracture mechanicsâ€based criteria for fatigue fracture of rolling bearings under the influence of defects. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 952-966.	3.4	4
6	Essential Structure of <i>S-N</i> Curve and the Essence of Scatter of Fatigue Life. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 881-888.	0.2	3
7	Analysis on Fatigue Life and its Scatter of Specimens Containing Small Artificial Defects with Various Sizes Based on the Essential Structure of <i>S-N</i> Curve. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 889-895.	0.2	2
8	Quantitative Characterization of the Spatial Distribution of Corrosion Pits Based on Nearest Neighbor Analysis. Corrosion, 2020, 76, 861-870.	1.1	4
9	The influence of interacting small defects on the fatigue limits of a pure iron and a bearing steel. International Journal of Fatigue, 2020, 135, 105560.	5.7	20
10	Hydrogen distribution of hydrogen-charged nickel analyzed via hardness test and secondary ion mass spectrometry. International Journal of Hydrogen Energy, 2020, 45, 9188-9199.	7.1	5
11	Comparative study of hydrogen-induced intergranular fracture behavior in Ni and Cu–Ni alloy at ambient and cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138349.	5.6	30
12	Visualization of trapped hydrogen along grain boundaries and its quantitative contribution to hydrogen-induced intergranular fracture in pure nickel. Materialia, 2019, 8, 100478.	2.7	22