Ho Jin Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3929647/publications.pdf Version: 2024-02-01

HO LIN LANC

#	Article	IF	CITATIONS
1	Progress of display performances: AR, VR, QLED, OLED, and TFT. Journal of Information Display, 2019, 20, 1-8.	4.0	92
2	Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. Journal of Information Display, 2022, 23, 1-17.	4.0	80
3	Progress of display performances: AR, VR, QLED, and OLED. Journal of Information Display, 2020, 21, 1-9.	4.0	52
4	CsPbBr ₃ /CH ₃ NH ₃ PbCl ₃ Double Layer Enhances Efficiency and Lifetime of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2191-2199.	17.4	44
5	Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Coordination Engineering of Lewis Acid–Base Adducts. Advanced Functional Materials, 2021, 31, 2106974.	14.9	37
6	Aggregation-induced phosphorescence enhancement in deep-red and near-infrared emissive iridium(<scp>iii</scp>) complexes for solution-processable OLEDs. Journal of Materials Chemistry C, 2020, 8, 4789-4800.	5.5	32
7	Ternary Exciplexes for High Efficiency Organic Lightâ€Emitting Diodes by Selfâ€Energy Transfer. Advanced Optical Materials, 2019, 7, 1801462.	7.3	27
8	Ancillary ligand-assisted robust deep-red emission in iridium(<scp>iii</scp>) complexes for solution-processable phosphorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 4143-4154.	5.5	26
9	Dual Mode Radiative Transition from a Phenoselenazine Derivative and Electrical Switching of the Emission Mechanism. Journal of Physical Chemistry Letters, 2020, 11, 5591-5600.	4.6	26
10	Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 1821-1830.	17.4	23
11	Single molecule white emission by intra- and inter-molecular charge transfer. Journal of Materials Chemistry C, 2020, 8, 10302-10308.	5.5	22
12	Modeling Electronâ€Transfer Degradation of Organic Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2003832.	21.0	21
13	Purely organic phosphorescent organic light emitting diodes using alkyl modified phenoselenazine. Journal of Materials Chemistry C, 2021, 9, 8233-8238.	5.5	19
14	High efficiency above 20% in polymeric thermally activated delayed fluorescent organic light-emitting diodes by a host embedded backbone structure. Polymer Chemistry, 2019, 10, 4872-4878.	3.9	16
15	Suppressed Nonradiative Decay of an Exciplex by an Inert Host for Efficiency Improvement in a Green Fluorescence Organic Light-Emitting Diode. Journal of Physical Chemistry C, 2019, 123, 26856-26861.	3.1	10
16	Key host parameters for long lifetimes in phosphorescent organic light-emitting diodes: bond dissociation energy in triplet excited state. Journal of Materials Chemistry C, 2020, 8, 1697-1703.	5.5	9
17	Conformation-dependent degradation of thermally activated delayed fluorescence materials bearing cycloamino donors. Communications Chemistry, 2020, 3, .	4.5	7
18	Mimicked Host–Dopant System Using Exciplexes in the Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 15057-15065.	3.1	6

Ho Jin Jang

#	Article	IF	CITATIONS
19	12â€1: Analysis of Key Factors Affecting the Lifetime of Blue Phosphorescent OLED Using CN Modified Blue Host Materials. Digest of Technical Papers SID International Symposium, 2019, 50, 141-144.	0.3	4
20	Lifetime enhancement of exciplex based organic light-emitting diodes by triplet exciton engineering. Journal of Industrial and Engineering Chemistry, 2021, 93, 388-393.	5.8	4
21	Composition-Dependent Optoelectronic Properties of Mixed 2D/3D Metal Halide Perovskite Films for Light-Emitting Diodes. ACS Applied Energy Materials, 0, , .	5.1	3
22	Purely organic phosphor sensitization for efficiency improvement in yellow fluorescent organic light-emitting diodes. Materials Chemistry Frontiers, 2022, 6, 1982-1988.	5.9	2
23	Organic Lightâ€Emitting Diodes: Modeling Electronâ€Transfer Degradation of Organic Lightâ€Emitting Devices (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170090.	21.0	1