
Antonio Bertei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3929090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of Electrolyte Transport Modelling in Lithium-ion Batteries: Concentrated Solution Theory Vs Generalized Nernst-Planck Model. Journal of the Electrochemical Society, 2022, 169, 020570.	2.9	5
2	Design guidelines for secondary lithium-ion battery electrodes to overcome performance limitations of recycled cathode materials. Journal of Energy Storage, 2022, 50, 104237.	8.1	3
3	Enabling early detection of lithium-ion battery degradation by linking electrochemical properties to equivalent circuit model parameters. Journal of Energy Storage, 2022, 50, 104213.	8.1	21
4	Model-guided design of a high performance and durability Ni nanofiber/ceria matrix solid oxide fuel cell electrode. Journal of Energy Chemistry, 2021, 56, 98-112.	12.9	21
5	Thermo-mechanical analysis of 3D manufactured electrodes for solid oxide fuel cells. Journal of the European Ceramic Society, 2021, 41, 497-508.	5.7	7
6	Guiding the Design of Heterogeneous Electrode Microstructures for Liâ€lon Batteries: Microscopic Imaging, Predictive Modeling, and Machine Learning. Advanced Energy Materials, 2021, 11, 2003908.	19.5	66
7	Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries. Molecules, 2021, 26, 2111.	3.8	13
8	Non-local phase field revisited. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 063212.	2.3	5
9	Dynamics of phase separation of sheared binary mixtures after a nonisothermal quenching. Physical Review Fluids, 2021, 6, .	2.5	6
10	On the stabilization and extension of the distribution of relaxation times analysis. Electrochimica Acta, 2021, 391, 138916.	5.2	12
11	Survey and sensitivity analysis of critical parameters in lithium-ion battery thermo-electrochemical modeling. Electrochimica Acta, 2021, 394, 139098.	5.2	11
12	Effective thermal conductivity of composite materials made of a randomly packed densified spherical phase. International Journal of Thermal Sciences, 2021, 170, 107123.	4.9	3
13	Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance. Energy and Environmental Science, 2021, 14, 5929-5946.	30.8	48
14	Constitutive Relations of Thermal and Mass Diffusion. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 27-38.	4.2	5
15	Modelling of redox flow battery electrode processes at a range of length scales: a review. Sustainable Energy and Fuels, 2020, 4, 5433-5468.	4.9	29
16	Microstructural Evolution of Battery Electrodes During Calendering. Joule, 2020, 4, 2746-2768.	24.0	95
17	Coupled CFD and 1-D dynamic modeling for the analysis of industrial Regenerative Thermal Oxidizers. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108117.	3.6	5
18	Structure—Properties—Performance: Modelling a Solid Oxide Fuel Cell with Infiltrated Electrodes. Journal of the Electrochemical Society, 2020, 167, 084523.	2.9	6

ANTONIO BERTEI

#	Article	IF	CITATIONS
19	Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 32806-32816.	8.0	45
20	Dynamics of phase separation of sheared inertialess binary mixtures. Physics of Fluids, 2020, 32, .	4.0	11
21	3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nature Communications, 2020, 11, 2079.	12.8	217
22	Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. Journal of Power Sources, 2019, 437, 226888.	7.8	12
23	Progress in 3D electrode microstructure modelling for fuel cells and batteries: transport and electrochemical performance. Progress in Energy, 2019, 1, 012003.	10.9	21
24	Design of Fibre Ni/CGO Anode and Model Interpretation. ECS Transactions, 2019, 91, 1721-1739.	0.5	2
25	Multi-length scale microstructural design of micro-tubular Solid Oxide Fuel Cells for optimised power density and mechanical robustness. Journal of Power Sources, 2019, 434, 226744.	7.8	10
26	Dynamic transition of dendrite orientation in the diffusive spinodal decomposition of binary mixtures under a thermal gradient. Chemical Engineering Science, 2019, 203, 450-463.	3.8	9
27	Unveiling the mechanisms of solid-state dewetting in Solid Oxide Cells with novel 2D electrodes. Journal of Power Sources, 2019, 420, 124-133.	7.8	12
28	Advanced Microstructures for Electrochemical Energy Systems: A Modelling Perspective. , 2019, , .		0
29	Quantification of the degradation of Ni-YSZ anodes upon redox cycling. Journal of Power Sources, 2018, 374, 61-68.	7.8	47
30	Uncovering the mechanisms of electrolyte permeation in porous electrodes for redox flow batteries through real time <i>in situ</i> 3D imaging. Sustainable Energy and Fuels, 2018, 2, 2068-2080.	4.9	34
31	The application of hierarchical structures in energy devices: new insights into the design of solid oxide fuel cells with enhanced mass transport. Energy and Environmental Science, 2018, 11, 2390-2403.	30.8	59
32	A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes. Journal of Power Sources, 2018, 396, 246-256.	7.8	15
33	Guidelines for the Rational Design and Engineering of 3D Manufactured Solid Oxide Fuel Cell Composite Electrodes. Journal of the Electrochemical Society, 2017, 164, F89-F98.	2.9	21
34	Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I — Experimental and electrochemical. Solid State Ionics, 2017, 301, 106-115.	2.7	40
35	3D Characterization of Diffusivities and Its Impact on Mass Flux and Concentration Overpotential in SOFC Anode. Journal of the Electrochemical Society, 2017, 164, F188-F195.	2.9	21
36	The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy, 2017, 38, 526-536.	16.0	52

ANTONIO BERTEI

#	Article	IF	CITATIONS
37	Simulated impedance of diffusion in porous media. Electrochimica Acta, 2017, 251, 681-689.	5.2	134
38	Theory-based design of sintered granular composites triples three-phase boundary in fuel cells. Physical Review E, 2017, 96, 052903.	2.1	2
39	Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes. Journal of Power Sources, 2017, 367, 177-186.	7.8	27
40	Characterization of Degradation in Nickel Impregnated Scandia-Stabilize Zirconia Electrodes during Isothermal Annealing. Journal of the Electrochemical Society, 2017, 164, F935-F943.	2.9	13
41	Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part II - Mechanistic modelling and physically-based interpretation. Solid State Ionics, 2017, 303, 181-190.	2.7	23
42	Oxygen Reduction, Transport and Separation in Low Silver Content Scandia-Stabilized Zirconia Composites. Journal of the Electrochemical Society, 2017, 164, F3045-F3054.	2.9	0
43	Microstructural Degradation. , 2017, , 79-99.		5
44	TauFactor: An open-source application for calculating tortuosity factors from tomographic data. SoftwareX, 2016, 5, 203-210.	2.6	257
45	PHYSICALLY-BASED DECONVOLUTION OF IMPEDANCE SPECTRA: INTERPRETATION, FITTING AND VALIDATION OF A NUMERICAL MODEL FOR LANTHANUM STRONTIUM COBALT FERRITE-BASED SOLID OXIDE FUEL CELLS. Electrochimica Acta, 2016, 208, 129-141.	5.2	33
46	Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy. International Journal of Hydrogen Energy, 2016, 41, 22381-22393.	7.1	50
47	Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159, 71-80.	5.2	29
48	Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. Journal of Power Sources, 2015, 279, 133-137.	7.8	43
49	Dusty-Gas Model with Uniform Pressure: A Numerical Study on the Impact of a Frequent Inconsistent Assumption in SOFC Electrode Modeling. ECS Transactions, 2015, 68, 2887-2895.	0.5	4
50	Effect of Non-Uniform Electrode Microstructure in Gas Diffusion Impedance. ECS Transactions, 2015, 68, 2897-2905.	0.5	7
51	Estimation of 3D Effective Properties from 2D Cross Sections in Porous Electrodes. ECS Transactions, 2015, 68, 2991-3001.	0.5	4
52	A Particle-Based Model for Effective Properties in Infiltrated Solid Oxide Fuel Cell Electrodes. Journal of the Electrochemical Society, 2014, 161, F1243-F1253.	2.9	22
53	Publisher's Note: A Particle-Based Model for Effective Properties in Infiltrated Solid Oxide Fuel Cell Electrodes [J. Electrochem. Soc.,161, F1243 (2014)]. Journal of the Electrochemical Society, 2014, 161, X24-X24.	2.9	0
54	Effective conductivity in random porous media with convex and non-convex porosity. International Journal of Heat and Mass Transfer, 2014, 71, 183-188.	4.8	42

ANTONIO BERTEI

#	Article	IF	CITATIONS
55	Electrochemical Simulation of Planar Solid Oxide Fuel Cells with Detailed Microstructural Modeling. Electrochimica Acta, 2014, 146, 151-163.	5.2	41
56	Modified collective rearrangement sphere-assembly algorithm for random packings of nonspherical particles: Towards engineering applications. Powder Technology, 2014, 253, 311-324.	4.2	33
57	Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chemical Engineering Science, 2013, 101, 175-190.	3.8	77
58	Microstructural Modeling and Effective Properties of Infiltrated SOFC Electrodes. ECS Transactions, 2013, 57, 2527-2536.	0.5	13
59	Percolating behavior of sintered random packings of spheres. Powder Technology, 2012, 231, 44-53.	4.2	34
60	Morphological and electrochemical modeling of SOFC composite cathodes with distributed porosity. Chemical Engineering Journal, 2012, 207-208, 167-174.	12.7	28
61	Mathematical modeling of mass and charge transport and reaction in a solid oxide fuel cell with mixed ionic conduction. Chemical Engineering Science, 2012, 68, 606-616.	3.8	18
62	Percolation theory in SOFC composite electrodes: Effects of porosity and particle size distribution on effective properties. Journal of Power Sources, 2011, 196, 9429-9436.	7.8	65
63	A comparative study and an extended theory of percolation for random packings of rigid spheres. Powder Technology, 2011, 213, 100-108.	4.2	36
64	Mathematical Modeling and Simulation for Optimization of IDEAL-Cell Performance. ECS Transactions, 2011, 35, 883-893.	0.5	3
65	Morphology and electrochemical activity of SOFC composite cathodes: II. Mathematical modelling. Journal of Applied Electrochemistry, 2009, 39, 503-511.	2.9	22
66	Influence of electrode thickness on the performance of composite electrodes for SOFC. Journal of Applied Electrochemistry, 2008, 38, 939-945.	2.9	40
67	The detachment of a wall-bound pendant drop suspended in a sheared fluid and subjected to an external force field. Physics of Fluids, 0, , .	4.0	1