
## Sunho Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3929069/publications.pdf Version: 2024-02-01



SUNHO CHOL

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources.<br>ChemSusChem, 2009, 2, 796-854.                                                                    | 6.8  | 2,178     |
| 2  | Application of Amine-Tethered Solid Sorbents for Direct CO <sub>2</sub> Capture from the Ambient<br>Air. Environmental Science & Technology, 2011, 45, 2420-2427.                           | 10.0 | 385       |
| 3  | Amineâ€Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO <sub>2</sub> Capture From Ambient Air. ChemSusChem, 2011, 4, 628-635.                          | 6.8  | 281       |
| 4  | Modification of the Mg/DOBDC MOF with Amines to Enhance CO <sub>2</sub> Adsorption from Ultradilute Gases. Journal of Physical Chemistry Letters, 2012, 3, 1136-1141.                       | 4.6  | 273       |
| 5  | Synthesis–Structure–Property Relationships for Hyperbranched Aminosilica CO <sub>2</sub><br>Adsorbents. Advanced Functional Materials, 2009, 19, 3821-3832.                                 | 14.9 | 263       |
| 6  | Amine–Oxide Hybrid Materials for CO <sub>2</sub> Capture from Ambient Air. Accounts of Chemical<br>Research, 2015, 48, 2680-2687.                                                           | 15.6 | 222       |
| 7  | Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO <sub>2</sub><br>Capture. Energy & Fuels, 2011, 25, 2416-2425.                                                 | 5.1  | 154       |
| 8  | Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO <sub>2</sub><br>Adsorbents Upon Exposure to Steam. ACS Applied Materials & Interfaces, 2010, 2, 3363-3372. | 8.0  | 144       |
| 9  | Layered Silicates by Swelling of AMHâ€3 and Nanocomposite Membranes. Angewandte Chemie -<br>International Edition, 2008, 47, 552-555.                                                       | 13.8 | 107       |
| 10 | Effect of the structural constituents of metal organic frameworks onÂcarbon dioxide capture.<br>Microporous and Mesoporous Materials, 2016, 219, 276-305.                                   | 4.4  | 75        |
| 11 | Effect of support structure on CO2 adsorption properties of pore-expanded hyperbranched aminosilicas. Microporous and Mesoporous Materials, 2012, 151, 231-240.                             | 4.4  | 59        |
| 12 | Effect of Pore Structure on CO <sub>2</sub> Adsorption Characteristics of Aminopolymer<br>Impregnated MCM-36. Langmuir, 2015, 31, 4534-4541.                                                | 3.5  | 43        |
| 13 | Functionalization of Metal–Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide<br>Capture Conditions. ChemSusChem, 2015, 8, 3405-3409.                                     | 6.8  | 35        |
| 14 | Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation. Microporous and Mesoporous Materials, 2021, 310, 110600.                   | 4.4  | 27        |
| 15 | Layered silicate by proton exchange and swelling of AMH-3. Microporous and Mesoporous Materials, 2008, 115, 75-84.                                                                          | 4.4  | 25        |
| 16 | Pore structure–CO <sub>2</sub> adsorption property relations of supported amine materials with multi-pore networks. Journal of Materials Chemistry A, 2017, 5, 8526-8536.                   | 10.3 | 20        |
| 17 | Rational Synthesis of a Hierarchical Supramolecular Porous Material Created via Self-Assembly of<br>Metal–Organic Framework Nanosheets. Inorganic Chemistry, 2020, 59, 3983-3992.           | 4.0  | 16        |
| 18 | Electro- and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks.<br>Catalysis Science and Technology, 2020, 10, 8265-8282.                                   | 4.1  | 13        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Generation and use of a pure titanium pillared MCM-36 structure as a high efficiency carbon dioxide<br>capture platform and amine loaded solid adsorbent. Microporous and Mesoporous Materials, 2019,<br>280, 151-156. | 4.4 | 9         |
| 20 | Flexible amorphous metal–organic frameworks with π Lewis acidic pore surface for selective<br>adsorptive separations. Dalton Transactions, 2021, 50, 3145-3154.                                                        | 3.3 | 9         |