Guillermo EscrivÃ;-EscrivÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928971/publications.pdf

Version: 2024-02-01

53 papers 1,085

448610 19 h-index 32 g-index

53 all docs 53
docs citations

53 times ranked 1186 citing authors

#	Article	IF	Citations
1	Technoâ€Economic Assessment of Renewable Energyâ€based Microgrids in the Amazon Remote Communities in Ecuador. Energy Technology, 2022, 10, 2100746.	1.8	9
2	A charging station planning model considering electric bus aggregators. Sustainable Energy, Grids and Networks, 2022, 30, 100638.	2.3	11
3	Energy Savings for Car Stores by Using Energy Efficiency Improvements. Processes, 2022, 10, 1108.	1.3	1
4	Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements. Energy, 2022, 256, 124572.	4.5	15
5	Energy Efficiency Measures in Bakeries toward Competitiveness and Sustainabilityâ€"Case Studies in Quito, Ecuador. Sustainability, 2021, 13, 5209.	1.6	5
6	Coordinated Siting and Sizing of Electric Taxi Charging Stations Considering Traffic and Power Systems Conditions., 2021,,.		1
7	A new interval prediction methodology for short-term electric load forecasting based on pattern recognition. Applied Energy, 2021, 297, 117173.	5.1	28
8	Smart Cooperative Energy Supply Strategy to Increase Reliability in Residential Stand-Alone Photovoltaic Systems. Applied Sciences (Switzerland), 2021, 11, 11723.	1.3	3
9	Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid. Energies, 2020, 13, 3455.	1.6	22
10	Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies, 2020, 13, 3483.	1.6	20
11	Urban Traffic Flow Mapping of an Andean Capital: Quito, Ecuador. IEEE Access, 2020, 8, 195459-195471.	2.6	5
12	Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability, 2020, 12, 1274.	1.6	36
13	A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies, 2020, 13, 1046.	1.6	10
14	Review of Energy Efficiency Technologies in the Food Industry: Trends, Barriers, and Opportunities. IEEE Access, 2020, 8, 48015-48029.	2.6	45
15	Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Intelligent Systems and Computing, 2020, , 164-175.	0.5	4
16	The impact of charging electric buses on the power grid. , 2020, , .		5
17	Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 2020, 10, 593-598.	0.2	7
18	Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability, 2019, 11, 5472.	1.6	3

#	Article	IF	CITATIONS
19	Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies. Energies, 2019, 12, 3114.	1.6	40
20	Occasional Energy Reviews from an External Expert Help to Reduce Building Energy Consumption at a Reduced Cost. Energies, 2019, 12, 2929.	1.6	1
21	Electric Vehicle Charging Load Prediction for Private Cars and Taxis Based on Vehicle Usage Data. , 2019, , .		4
22	Design Considerations of a Monitoring System of a Farm for Energy Efficiency Purposes., 2019,,.		0
23	Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 2019, 169, 710-718.	4.5	34
24	Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 2018, 164, 99-108.	3.1	22
25	Design and validation of a methodology for standardizing prequalification of industrial demand response resources. Electric Power Systems Research, 2018, 164, 220-229.	2.1	10
26	An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 2017, 132, 126-135.	4.5	44
27	Optimal Energy Management of an Academic Building with Distributed Generation and Energy Storage Systems. IOP Conference Series: Earth and Environmental Science, 2017, 78, 012018.	0.2	2
28	A digital control system for Lighting Energy Consumption Efficiency (LECE)., 2017,,.		0
29	Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks., 2017,,.		8
30	Improved variable step size P&O MPPT algorithm for PV systems. , 2016, , .		15
31	Quantitative assessment of hybrid systems of heating domestic water based on solar energy in andean zones of Ecuador. , 2016, , .		4
32	Nuisance tripping of residual current circuit breakers in circuits supplying electronic loads. Electric Power Systems Research, 2016, 131, 139-146.	2.1	7
33	Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 2016, 86, 384-391.	4.3	54
34	Simulation Model for Energy Integration of Distributed Resources in Buildings. IEEE Latin America Transactions, 2015, 13, 166-171.	1.2	12
35	Electrical consumption forecast using actual data of building end-use decomposition. Energy and Buildings, 2014, 82, 73-81.	3.1	10
36	Nuisance tripping of residual current circuit breakers: A practical case. Electric Power Systems Research, 2014, 106, 180-187.	2.1	11

#	Article	IF	Citations
37	Maintain maintenance: a look at some threats in the sector. International Journal of Services, Technology and Management, 2014, 20, 233.	0.1	0
38	Renewable generation and demand response integration in micro-grids: development of a new energy management and control system. Energy Efficiency, 2013, 6, 695-706.	1.3	6
39	Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy and Buildings, 2013, 60, 38-46.	3.1	64
40	Continuous assessment of energy efficiency in commercial buildings using energy rating factors. Energy and Buildings, 2012, 49, 78-84.	3.1	19
41	Evaluation and assessment of demand response potential applied to the meat industry. Applied Energy, 2012, 92, 84-91.	5.1	48
42	Economic and environmental evaluation of customers' flexibility participating in operation markets: Application to the meat industry. Energy, 2012, 41, 368-379.	4.5	14
43	Novel energy management and control system for introducing demand response actions and energy efficiency in micro-grid operation. , 2011, , .		1
44	Basic actions to improve energy efficiency in commercial buildings in operation. Energy and Buildings, 2011, 43, 3106-3111.	3.1	53
45	New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 2011, 43, 3112-3119.	3.1	105
46	Methodology for validating technical tools to assess customer Demand Response: Application to a commercial customer. Energy Conversion and Management, 2011, 52, 1507-1511.	4.4	22
47	New indices to assess building energy efficiency at the use stage. Energy and Buildings, 2011, 43, 476-484.	3.1	37
48	Simulation of demand side participation in Spanish short term electricity markets. Energy Conversion and Management, 2011, 52, 2705-2711.	4.4	10
49	Wind farm electrical power production model for load flow analysis. Renewable Energy, 2011, 36, 1008-1013.	4.3	30
50	Active Demand Response Strategies to Improve Energy Efficiency in the Meat Industry. , 2011, , .		2
51	Method for modelling space conditioning aggregated daily load curves: Application to a university building. Energy and Buildings, 2010, 42, 1275-1282.	3.1	21
52	Application of an energy management and control system to assess the potential of different control strategies in HVAC systems. Energy and Buildings, 2010, 42, 2258-2267.	3.1	102
53	Technical and economical tools to assess customer demand response in the commercial sector. Energy Conversion and Management, 2009, 50, 2605-2612.	4.4	43