Guillermo EscrivÃ;-EscrivÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928971/publications.pdf

Version: 2024-02-01

53 papers 1,085

³⁶¹⁴¹³
20
h-index

32 g-index

53 all docs 53 docs citations

53 times ranked 1048 citing authors

#	Article	IF	CITATIONS
1	New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 2011, 43, 3112-3119.	6.7	105
2	Application of an energy management and control system to assess the potential of different control strategies in HVAC systems. Energy and Buildings, 2010, 42, 2258-2267.	6.7	102
3	Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy and Buildings, 2013, 60, 38-46.	6.7	64
4	Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 2016, 86, 384-391.	8.9	54
5	Basic actions to improve energy efficiency in commercial buildings in operation. Energy and Buildings, 2011, 43, 3106-3111.	6.7	53
6	Evaluation and assessment of demand response potential applied to the meat industry. Applied Energy, 2012, 92, 84-91.	10.1	48
7	Review of Energy Efficiency Technologies in the Food Industry: Trends, Barriers, and Opportunities. IEEE Access, 2020, 8, 48015-48029.	4.2	45
8	An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 2017, 132, 126-135.	8.8	44
9	Technical and economical tools to assess customer demand response in the commercial sector. Energy Conversion and Management, 2009, 50, 2605-2612.	9.2	43
10	Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies. Energies, 2019, 12, 3114.	3.1	40
11	New indices to assess building energy efficiency at the use stage. Energy and Buildings, 2011, 43, 476-484.	6.7	37
12	Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability, 2020, 12, 1274.	3.2	36
13	Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 2019, 169, 710-718.	8.8	34
14	Wind farm electrical power production model for load flow analysis. Renewable Energy, 2011, 36, 1008-1013.	8.9	30
15	A new interval prediction methodology for short-term electric load forecasting based on pattern recognition. Applied Energy, 2021, 297, 117173.	10.1	28
16	Methodology for validating technical tools to assess customer Demand Response: Application to a commercial customer. Energy Conversion and Management, 2011, 52, 1507-1511.	9.2	22
17	Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 2018, 164, 99-108.	6.7	22
18	Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid. Energies, 2020, 13, 3455.	3.1	22

#	Article	IF	CITATIONS
19	Method for modelling space conditioning aggregated daily load curves: Application to a university building. Energy and Buildings, 2010, 42, 1275-1282.	6.7	21
20	Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies, 2020, 13, 3483.	3.1	20
21	Continuous assessment of energy efficiency in commercial buildings using energy rating factors. Energy and Buildings, 2012, 49, 78-84.	6.7	19
22	Improved variable step size P&O MPPT algorithm for PV systems. , 2016, , .		15
23	Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements. Energy, 2022, 256, 124572.	8.8	15
24	Economic and environmental evaluation of customers' flexibility participating in operation markets: Application to the meat industry. Energy, 2012, 41, 368-379.	8.8	14
25	Simulation Model for Energy Integration of Distributed Resources in Buildings. IEEE Latin America Transactions, 2015, 13, 166-171.	1.6	12
26	Nuisance tripping of residual current circuit breakers: A practical case. Electric Power Systems Research, 2014, 106, 180-187.	3.6	11
27	A charging station planning model considering electric bus aggregators. Sustainable Energy, Grids and Networks, 2022, 30, 100638.	3.9	11
28	Simulation of demand side participation in Spanish short term electricity markets. Energy Conversion and Management, 2011, 52, 2705-2711.	9.2	10
29	Electrical consumption forecast using actual data of building end-use decomposition. Energy and Buildings, 2014, 82, 73-81.	6.7	10
30	Design and validation of a methodology for standardizing prequalification of industrial demand response resources. Electric Power Systems Research, 2018, 164, 220-229.	3.6	10
31	A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies, 2020, 13, 1046.	3.1	10
32	Technoâ€Economic Assessment of Renewable Energyâ€based Microgrids in the Amazon Remote Communities in Ecuador. Energy Technology, 2022, 10, 2100746.	3.8	9
33	Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks., 2017,,.		8
34	Nuisance tripping of residual current circuit breakers in circuits supplying electronic loads. Electric Power Systems Research, 2016, 131, 139-146.	3.6	7
35	Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 2020, 10, 593-598.	0.4	7
36	Renewable generation and demand response integration in micro-grids: development of a new energy management and control system. Energy Efficiency, 2013, 6, 695-706.	2.8	6

#	Article	IF	Citations
37	Urban Traffic Flow Mapping of an Andean Capital: Quito, Ecuador. IEEE Access, 2020, 8, 195459-195471.	4.2	5
38	Energy Efficiency Measures in Bakeries toward Competitiveness and Sustainabilityâ€"Case Studies in Quito, Ecuador. Sustainability, 2021, 13, 5209.	3.2	5
39	The impact of charging electric buses on the power grid. , 2020, , .		5
40	Quantitative assessment of hybrid systems of heating domestic water based on solar energy in andean zones of Ecuador., 2016 ,,.		4
41	Electric Vehicle Charging Load Prediction for Private Cars and Taxis Based on Vehicle Usage Data. , 2019, , .		4
42	Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Intelligent Systems and Computing, 2020, , 164-175.	0.6	4
43	Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability, 2019, 11, 5472.	3.2	3
44	Smart Cooperative Energy Supply Strategy to Increase Reliability in Residential Stand-Alone Photovoltaic Systems. Applied Sciences (Switzerland), 2021, 11, 11723.	2.5	3
45	Optimal Energy Management of an Academic Building with Distributed Generation and Energy Storage Systems. IOP Conference Series: Earth and Environmental Science, 2017, 78, 012018.	0.3	2
46	Active Demand Response Strategies to Improve Energy Efficiency in the Meat Industry. , 2011, , .		2
47	Novel energy management and control system for introducing demand response actions and energy efficiency in micro-grid operation. , $2011, \ldots$		1
48	Occasional Energy Reviews from an External Expert Help to Reduce Building Energy Consumption at a Reduced Cost. Energies, 2019, 12, 2929.	3.1	1
49	Coordinated Siting and Sizing of Electric Taxi Charging Stations Considering Traffic and Power Systems Conditions., 2021,,.		1
50	Energy Savings for Car Stores by Using Energy Efficiency Improvements. Processes, 2022, 10, 1108.	2.8	1
51	Maintain maintenance: a look at some threats in the sector. International Journal of Services, Technology and Management, 2014, 20, 233.	0.1	0
52	A digital control system for Lighting Energy Consumption Efficiency (LECE)., 2017,,.		0
53	Design Considerations of a Monitoring System of a Farm for Energy Efficiency Purposes. , 2019, , .		0