Luis Schuartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928826/publications.pdf

Version: 2024-02-01

		2258059	2550090
5	13	3	3
papers	citations	h-index	g-index
5	5	5	11
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Concurrent Tri-band CMOS Power Amplifier Linearized by 3D Improved Memory Polynomial Digital Predistorter. Circuits, Systems, and Signal Processing, 2021, 40, 2176-2208.	2.0	0
2	Modified indirect learning applied to neural network-based pre-distortion of a concurrent dual-band CMOS power amplifier. Analog Integrated Circuits and Signal Processing, 2021, 106, 277-292.	1.4	3
3	Reduced-Complexity Polynomials with Memory Applied to the Linearization of Power Amplifiers with Real-Time Discrete Gain Control. Circuits, Systems, and Signal Processing, 2019, 38, 3901-3930.	2.0	3
4	Comparison between direct and indirect learnings for the digital pre-distortion of concurrent dual-band power amplifiers. , $2019, , .$		1
5	A fully integrated CMOS power amplifier with discrete gain control for efficiency enhancement. Microelectronics Journal, 2017, 70, 34-42.	2.0	6