Xuefeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39285/publications.pdf

Version: 2024-02-01

759233 526287 29 748 12 27 citations h-index g-index papers 29 29 29 945 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dual Ionically Cross-linked Double-Network Hydrogels with High Strength, Toughness, Swelling Resistance, and Improved 3D Printing Processability. ACS Applied Materials & Emp; Interfaces, 2018, 10, 31198-31207.	8.0	165
2	Strong Tough Polyampholyte Hydrogels via the Synergistic Effect of Ionic and Metal–Ligand Bonds. Advanced Functional Materials, 2021, 31, 2103917.	14.9	97
3	Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter, 2017, 13, 911-920.	2.7	94
4	Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer, 2017, 121, 55-63.	3.8	64
5	Integrated Functional Highâ€Strength Hydrogels with Metalâ€Coordination Complexes and Hâ€Bonding Dual Physically Crossâ€linked Networks. Macromolecular Rapid Communications, 2018, 39, e1800400.	3.9	45
6	Strong, tough and mechanically self-recoverable poly(vinyl alcohol)/alginate dual-physical double-network hydrogels with large cross-link density contrast. RSC Advances, 2018, 8, 16674-16689.	3.6	40
7	High strength and antibacterial polyelectrolyte complex CS/HS hydrogel films for wound healing. Soft Matter, 2019, 15, 7686-7694.	2.7	34
8	Tough hydrogels with tunable soft and wet interfacial adhesion. Polymer Testing, 2021, 93, 106976.	4.8	21
9	Multiple Hydrogen Bonds–Reinforced Hydrogels with High Strength, Shape Memory, and Adsorption Antiâ€Inflammatory Molecules. Macromolecular Rapid Communications, 2020, 41, e2000202.	3.9	20
10	Low-velocity super-lubrication of sodium-alginate/polyacrylamide ionic–covalent hybrid double-network hydrogels. Soft Matter, 2015, 11, 3022-3033.	2.7	17
11	Highâ€Performance Photochromic Hydrogels for Rewritable Information Record. Macromolecular Rapid Communications, 2021, 42, e2000701.	3.9	16
12	Super Bulk and Interfacial Toughness of Amylopectin Reinforced PAAm/PVA Doubleâ€Network Hydrogels via Multiple Hydrogen Bonds. Macromolecular Materials and Engineering, 2020, 305, 1900450.	3 . 6	14
13	High-strength, thermosensitive double network hydrogels with antibacterial functionality. Soft Matter, 2021, 17, 6688-6696.	2.7	13
14	Improved compatibility in Recycled-PE / LDPE using glycidyl methacrylate, acrylic acid grafted mPE. Polymer Testing, 2018, 69, 508-513.	4.8	12
15	Agar/PAAc-Fe3+ hydrogels with pH-sensitivity and high toughness using dual physical cross-linking. Iranian Polymer Journal (English Edition), 2018, 27, 829-840.	2.4	11
16	Rheology, crystallization, and enhanced mechanical properties of uniaxially oriented ethylene–octene copolymer/polyolefin elastomer blends. Polymer, 2022, 243, 124655.	3.8	11
17	High-strength, strong-adhesion, and antibacterial polyelectrolyte complex hydrogel films from natural polysaccharides. Polymer Testing, 2022, 109, 107547.	4.8	11
18	Programmed Transformations of Strong Polyvinyl Alcohol/Sodium Alginate Hydrogels via Ionic Crosslink Lithography. Macromolecular Rapid Communications, 2020, 41, 2000127.	3.9	10

Xuefeng Li

#	Article	IF	CITATIONS
19	Highly stretchable, tough, and selfâ€recoverable and selfâ€healable dual physically crosslinked hydrogels with synergistic "soft and hard―networks. Polymer Engineering and Science, 2019, 59, 145-154.	3.1	9
20	Design of aluminum trihydroxide and Pâ€N coreâ€shell structures and their synergistic effects on halogenâ€free flameâ€retardant polyethylene composites. Polymers for Advanced Technologies, 2020, 31, 2020-2030.	3.2	8
21	Interfacial adhesion and water resistance of stainless steel–polyolefin improved by functionalized silane. Polymer Engineering and Science, 2019, 59, 1866-1873.	3.1	6
22	High Mechanical Properties of Stretching Oriented Poly(butylene succinate) with Two-Step Chain Extension. Polymers, 2022, 14, 1876.	4.5	6
23	Strengthening and stiffening in swollen polyampholyte hydrogels. Materials Letters, 2022, 324, 132582.	2.6	6
24	Fabrication and Properties of Modified Poly(butylene terephthalate) with Two‣tep Chain Extension. Macromolecular Materials and Engineering, 2021, 306, 2000638.	3.6	5
25	Liquid crystallinity and thermal properties of polyhedral oligomeric silsesquioxane/side-chain azobenzene hybrid copolymer. Nanotechnology Reviews, 2020, 9, 886-895.	5.8	5
26	Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 459-469.	3.5	4
27	Poly(vinyldiaminotriazine) nanoparticle adsorption of small drug molecules in aqueous phase and the role of synergistic interaction between hydrogen bonding and hydrophobic affinity. Colloid and Polymer Science, 2021, 299, 37-47.	2.1	2
28	Physical, antioxidant and thermal shock properties of Cu/Ti2AlC conductive composites. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 504-507.	1.0	1
29	Improved mechanical and rheological properties of recycled polyethylene by acrylic acid-assisted melt grafting of glycidyl methacrylate. Plastics, Rubber and Composites, 2019, 48, 440-447.	2.0	1