Juhua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928107/publications.pdf Version: 2024-02-01

ПЛНИА ГИТ

#	Article	IF	CITATIONS
1	Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress. Plants, 2022, 11, 662.	3.5	14
2	Identification and expression of the BAHD family during development, ripening, and stress response in banana. Molecular Biology Reports, 2021, 48, 1127-1138.	2.3	9
3	Genome-Wide Identification and Transcript Analysis of TCP Gene Family in Banana (Musa acuminata L.). Biochemical Genetics, 2021, , 1.	1.7	10
4	Transient virus-inducedÂgene silencingÂof MaBAM9b efficiently suppressed starch degradation during postharvest banana fruit ripening. Plant Biotechnology Reports, 2021, 15, 527-536.	1.5	3
5	Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. Journal of Experimental Botany, 2021, 72, 7078-7091.	4.8	21
6	Overexpression of a Banana Aquaporin Gene MaPIP1;1 Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Banana and Analysis of Its Interacting Transcription Factors. Frontiers in Plant Science, 2021, 12, 699230.	3.6	10
7	Elucidating the mechanism of MaGWD1-mediated starch degradation cooperatively regulated by MaMADS36 and MaMADS55 in banana. Postharvest Biology and Technology, 2021, 179, 111587.	6.0	13
8	ldentification, Expression, and Interaction Network Analyses of the CDPK Gene Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Biochemical Genetics, 2020, 58, 40-62.	1.7	18
9	An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiology and Biochemistry, 2020, 147, 66-76.	5.8	54
10	Characteristics of banana B genome MADS-box family demonstrate their roles in fruit development, ripening, and stress. Scientific Reports, 2020, 10, 20840.	3.3	2
11	Genomic and Transcriptional Analysis of Banana Ovate Family Proteins Reveals Their Relationship with Fruit Development and Ripening. Biochemical Genetics, 2020, 58, 412-429.	1.7	8
12	Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits. Horticulture Research, 2020, 7, 101.	6.3	18
13	A novel aquaporin gene MaSIP2-1 confers tolerance to drought and cold stresses in transgenic banana. Molecular Breeding, 2020, 40, 1.	2.1	9
14	Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants, 2019, 5, 810-821.	9.3	132
15	<i>Mu<scp>MADS</scp>1</i> and <i>Ma<scp>OFP</scp>1</i> regulate fruit quality in a tomato <i>ovate</i> mutant. Plant Biotechnology Journal, 2018, 16, 989-1001.	8.3	33
16	Overexpression of a Novel ROP Gene from the Banana (MaROP5g) Confers Increased Salt Stress Tolerance. International Journal of Molecular Sciences, 2018, 19, 3108.	4.1	22
17	Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2018, 128, 163-169.	5.8	24
18	Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana. Scientific Reports, 2017, 7, 43007.	3.3	65

Јиниа Liu

#	Article	IF	CITATIONS
19	Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Scientific Reports, 2017, 7, 3536.	3.3	80
20	Elucidating the Mechanisms of the Tomato <i>ovate</i> Mutation in Regulating Fruit Quality Using Proteomics Analysis. Journal of Agricultural and Food Chemistry, 2017, 65, 10048-10057.	5.2	10
21	Genome-wide analysis of banana MADS-box family closely related to fruit development and ripening. Scientific Reports, 2017, 7, 3467.	3.3	36
22	Efficient regeneration and genetic transformation platform applicable to five Musa varieties. Electronic Journal of Biotechnology, 2017, 25, 33-38.	2.2	18
23	The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biology, 2017, 17, 145.	3.6	51
24	Soluble Starch Synthase III-1 in Amylopectin Metabolism of Banana Fruit: Characterization, Expression, Enzyme Activity, and Functional Analyses. Frontiers in Plant Science, 2017, 8, 454.	3.6	19
25	The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses. International Journal of Molecular Sciences, 2017, 18, 1581.	4.1	34
26	A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis. PLoS ONE, 2016, 11, e0160690.	2.5	4
27	Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Scientific Reports, 2016, 6, 30203.	3.3	65
28	Genome-wide identification and expression analysis of the β-amylase genes strongly associated with fruit development, ripening, and abiotic stress response in two banana cultivars. Frontiers of Agricultural Science and Engineering, 2016, 3, 346.	1.4	18
29	Role for the banana <scp>AGAMOUS</scp> â€like gene <i><scp>MaMADS7</scp></i> in regulation of fruit ripening and quality. Physiologia Plantarum, 2015, 155, 217-231.	5.2	35
30	Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana. International Journal of Molecular Sciences, 2015, 16, 19728-19751.	4.1	69
31	Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening. PLoS ONE, 2015, 10, e0123870.	2.5	24
32	The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science, 2015, 6, 742.	3.6	131
33	The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Functional and Integrative Genomics, 2015, 15, 247-260.	3.5	24
34	A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 2014, 14, 59.	3.6	175
35	Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Electronic Journal of Biotechnology, 2014, 17, 287-295.	2.2	10
36	Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress. Planta, 2013, 237, 1025-1036.	3.2	19

Јиниа Liu

#	Article	IF	CITATIONS
37	De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. BMC Genomics, 2012, 13, 650.	2.8	74
38	Regeneration and production of transgenic Lilium longiflorum via Agrobacterium tumefaciens. In Vitro Cellular and Developmental Biology - Plant, 2011, 47, 348-356.	2.1	16
39	Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening. Plant Cell Reports, 2009, 28, 103-111.	5.6	50