George A Garinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Damage and the Aging Epigenome. Journal of Investigative Dermatology, 2021, 141, 961-967.	0.7	8
2	The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nature Communications, 2021, 12, 3153.	12.8	27
3	Molecular pathology of rare progeroid diseases. Trends in Molecular Medicine, 2021, 27, 907-922.	6.7	23
4	R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. Science Advances, 2021, 7, eabj5769.	10.3	30
5	Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nature Communications, 2020, 11, 42.	12.8	44
6	DNA Damage Response and Metabolic Reprogramming in Health and Disease. Trends in Genetics, 2020, 36, 777-791.	6.7	26
7	Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity. Cell Metabolism, 2020, 32, 591-604.e7.	16.2	79
8	Nucleotide Excision Repair and Transcriptionâ€Associated Genome Instability. BioEssays, 2019, 41, e1800201.	2.5	23
9	Nuclear DNA Damage and Ageing. Sub-Cellular Biochemistry, 2018, 90, 309-322.	2.4	6
10	Editorial: DNA damage & amp; immunity. Mechanisms of Ageing and Development, 2017, 165, 1-2.	4.6	1
11	ERCC1–XPF cooperates with CTCF and cohesin toÂfacilitate the developmental silencing of imprintedÂgenes. Nature Cell Biology, 2017, 19, 421-432.	10.3	28
12	DNA damage-induced inflammation and nuclear architecture. Mechanisms of Ageing and Development, 2017, 165, 17-26.	4.6	11
13	DNA Damage: From Chronic Inflammation to Age-Related Deterioration. Frontiers in Genetics, 2016, 7, 187.	2.3	49
14	Dicer1–miR-328–Bace1 signalling controls brown adipose tissue differentiation and function. Nature Cell Biology, 2016, 18, 328-336.	10.3	80
15	Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS ONE, 2016, 11, e0149941.	2.5	23
16	DNA damage and innate immunity: links and trade-offs. Trends in Immunology, 2014, 35, 429-435.	6.8	120
17	Tissue-specific aging: a tale of functional asymmetry. Aging, 2014, 6, 7-8.	3.1	9
18	Programmed Death-1 Shapes Memory Phenotype CD8 T Cell Subsets in a Cell-Intrinsic Manner. Journal of Immunology, 2013, 190, 6104-6114.	0.8	49

GEORGE A GARINIS

#	Article	IF	CITATIONS
19	DNA Damage Triggers a Chronic Autoinflammatory Response, Leading to Fat Depletion in NER Progeria. Cell Metabolism, 2013, 18, 403-415.	16.2	102
20	Nucleotide excision repair: new tricks with old bricks. Trends in Genetics, 2012, 28, 566-573.	6.7	128
21	Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2995-3000.	7.1	44
22	A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology, 2012, 55, 609-621.	7.3	106
23	NF-κB inhibition delays DNA damage–induced senescence and aging in mice. Journal of Clinical Investigation, 2012, 122, 2601-2612.	8.2	358
24	Transcription-blocking DNA damage in aging and longevity. Cell Cycle, 2009, 8, 2131-2137.	2.6	17
25	Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nature Cell Biology, 2009, 11, 604-615.	10.3	127
26	Sealing the gap between nuclear DNA damage and longevity. Molecular and Cellular Endocrinology, 2009, 299, 112-117.	3.2	38
27	Transcription-blocking DNA damage in aging and longevity. Cell Cycle, 2009, 8, 2134-5.	2.6	8
28	DNA damage and ageing: new-age ideas for an age-old problem. Nature Cell Biology, 2008, 10, 1241-1247.	10.3	325
29	Age to survive: DNA damage and aging. Trends in Genetics, 2008, 24, 77-85.	6.7	230
30	Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms. PLoS Genetics, 2008, 4, e1000161.	3.5	178
31	Nucleotide excision repair deficiencies and the somatotropic axis in aging. Hormones, 2008, 7, 9-16.	1.9	13
32	Perturbations of Vascular Homeostasis and Aortic Valve Abnormalities in Fibulin-4 Deficient Mice. Circulation Research, 2007, 100, 738-746.	4.5	146
33	Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development (Cambridge), 2007, 134, 261-272.	2.5	81
34	Retinal Degeneration and Ionizing Radiation Hypersensitivity in a Mouse Model for Cockayne Syndrome. Molecular and Cellular Biology, 2007, 27, 1433-1441.	2.3	69
35	Extended longevity mechanisms in short-lived progeroid mice: Identification of a preservative stress response associated with successful aging. Mechanisms of Ageing and Development, 2007, 128, 58-63.	4.6	24
36	Differential Role of Basal Keratinocytes in UV-Induced Immunosuppression and Skin Cancer. Molecular and Cellular Biology, 2006, 26, 8515-8526.	2.3	52

GEORGE A GARINIS

#	Article	IF	CITATIONS
37	A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 2006, 444, 1038-1043.	27.8	601
38	Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome. PLoS Biology, 2006, 5, e2.	5.6	200
39	Photolyases: capturing the light to battle skin cancer. Future Oncology, 2006, 2, 191-199.	2.4	24
40	Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO Journal, 2005, 24, 3952-3962.	7.8	139
41	High frequency of concomitant nm23-H1 and E-cadherin transcriptional inactivation in primary non-inheriting colorectal carcinomas. Journal of Molecular Medicine, 2003, 81, 256-263.	3.9	9
42	Glucose-6-phosphate dehydrogenase deficiency does not result from mutations in the promoter region of the G6PD gene. Journal of Clinical Laboratory Analysis, 2003, 17, 90-92.	2.1	6
43	Cytokine serum levels in patients with chronic HCV infection. Journal of Clinical Laboratory Analysis, 2002, 16, 40-46.	2.1	48
44	DNA hypermethylation: when tumour suppressor genes go silent. Human Genetics, 2002, 111, 115-127.	3.8	104
45	Hypermethylation-associated transcriptional silencing of E-cadherin in primary sporadic colorectal carcinomas. Journal of Pathology, 2002, 198, 442-449.	4.5	54
46	Molecular Heterogeneity of the Glucose-6-Phosphate Dehydrogenase Deficiency in the Hellenic Population. Human Heredity, 2000, 50, 237-241.	0.8	29