List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of FGF2 isoformsÂin Cell Survival in the Heart. , 2022, , 269-283.		1
2	SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation. Basic Research in Cardiology, 2021, 116, 25.	2.5	20
3	Elimination of endogenous high molecular weight FGF2 prevents pressure-overload-induced systolic dysfunction, linked to increased FGFR1 activity and NR1D1 expression. Cell and Tissue Research, 2021, 385, 753-768.	1.5	7
4	A Cardiac Mitochondrial FGFR1 Mediates the Antithetical Effects of FGF2 Isoforms on Permeability Transition. Cells, 2021, 10, 2735.	1.8	1
5	Simvastatin increases temozolomideâ€induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS Journal, 2020, 287, 1005-1034.	2.2	84
6	Oxidized phospholipids in Doxorubicin-induced cardiotoxicity. Chemico-Biological Interactions, 2019, 303, 35-39.	1.7	95
7	Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H279-H288.	1.5	11
8	Do different nuclei in a binucleated cardiomyocyte have different rates of nuclear protein import?. Journal of Molecular and Cellular Cardiology, 2019, 126, 140-142.	0.9	1
9	Low and High Molecular Weight FGF-2 Have Differential Effects on Astrocyte Proliferation, but Are Both Protective Against AÎ2-Induced Cytotoxicity. Frontiers in Molecular Neuroscience, 2019, 12, 328.	1.4	19
10	Abstract 838: High Molecular Weight FGF2 Contributes to Pressure Overload Induced Systolic Dysfunction by a Mechanism Associated With Modulation of the NR1D1 Orphan Nuclear Receptor Expression. Circulation Research, 2019, 125, .	2.0	1
11	Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cellular Signalling, 2018, 47, 44-51.	1.7	17
12	Cardiac <i>Fgf-16</i> Expression Supports Cardiomyocyte Survival and Increases Resistance to Doxorubicin Cytotoxicity. DNA and Cell Biology, 2018, 37, 866-877.	0.9	5
13	Statins: A New Approach to Combat Temozolomide Chemoresistance in Glioblastoma. Journal of Investigative Medicine, 2018, 66, 1083-1087.	0.7	27
14	Antidepressant-Like Effects of Low- and High-Molecular Weight FGF-2 on Chronic Unpredictable Mild Stress Mice. Frontiers in Molecular Neuroscience, 2018, 11, 377.	1.4	31
15	Non-mitogenic FGF2 protects cardiomyocytes from acute doxorubicin-induced toxicity independently ofÂthe protein kinase CK2/heme oxygenase-1 pathway. Cell and Tissue Research, 2018, 374, 607-617.	1.5	11
16	Inhibition of Autophagy by Mevalonate Pathway Inhibitors, a New Therapeutic Approach to sensitize Glioblastoma Cells to Temozolomide Induced Apoptosis. FASEB Journal, 2018, 32, 533.41.	0.2	2
17	Autologous Bone Marrow Stem Cell Therapy in Patients With ST-Elevation Myocardial Infarction: A Systematic Review and Meta-analysis. Canadian Journal of Cardiology, 2017, 33, 1611-1623.	0.8	18
18	Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget, 2017, 8, 87415-87430	0.8	25

#	Article	IF	CITATIONS
19	Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget, 2017, 8, 46663-46680.	0.8	225
20	Neuroprotective effects of LMW and HMW FGF2 against amyloid beta toxicity in primary cultured hippocampal neurons. Neuroscience Letters, 2016, 632, 109-113.	1.0	16
21	The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovascular Research, 2014, 103, 72-80.	1.8	63
22	High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling. PLoS ONE, 2014, 9, e97281.	1.1	54
23	FGF-2 and FGF-16 Protect Isolated Perfused Mouse Hearts from Acute Doxorubicin-Induced Contractile Dysfunction. Cardiovascular Toxicology, 2013, 13, 244-253.	1.1	23
24	FGF-2 protects cardiomyocytes from doxorubicin damage via protein kinase C-dependent effects on efflux transporters. Cardiovascular Research, 2013, 98, 56-63.	1.8	23
25	Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. Hypertension Research, 2013, 36, 866-872.	1.5	39
26	Calreticulin Induces Dilated Cardiomyopathy. PLoS ONE, 2013, 8, e56387.	1.1	24
27	Together and apart: inhibition of DNA synthesis by connexin-43 and its relationship to transforming growth factor 1². Frontiers in Pharmacology, 2013, 4, 90.	1.6	3
28	Connexin43 phosphorylation and cytoprotection in the heart. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2009-2013.	1.4	47
29	Connexin 43 phosphorylation and degradation are required for adipogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1731-1744.	1.9	30
30	Resveratrol prevents accumulation and secretion of the proâ€hypertrophic high molecular weight FGFâ€2 by rat and human cardiac myofibroblasts. FASEB Journal, 2012, 26, 1059.6.	0.2	0
31	Fibroblast growth factorâ€2 exerts protective effects on cardiac mitochondria. FASEB Journal, 2012, 26, 137.12.	0.2	Ο
32	Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. European Journal of Pharmacology, 2011, 668, 217-224.	1.7	52
33	Protection by endogenous FGF-2 against isoproterenol-induced cardiac dysfunction is attenuated by cyclosporine A. Molecular and Cellular Biochemistry, 2011, 357, 1-8.	1.4	4
34	A single bout of exercise promotes sustained left ventricular function improvement after isoproterenol-induced injury in mice. Journal of Physiological Sciences, 2011, 61, 331-336.	0.9	18
35	Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes. Cardiovascular Research, 2011, 89, 139-147.	1.8	31
36	Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: Expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Developmental Dynamics, 2010, 239, 1573-1584.	0.8	226

#	Article	IF	CITATIONS
37	A High-Lipid Diet Potentiates Left Ventricular Dysfunction in Nitric Oxide Synthase 3-Deficient Mice after Chronic Pressure Overload ,. Journal of Nutrition, 2010, 140, 1438-1444.	1.3	5
38	Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovascular Research, 2009, 83, 672-681.	1.8	80
39	High molecular weight FGF-2 promotes postconditioning-like cardioprotection linked to activation of the protein kinaseAC isoforms Akt and p70 S6 kinaseThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba Canadian Journal of Physiology and Pharmacology, 2009, 87, 798-804.	0.7	18
40	Fibroblast growth factor-2 stimulates mitochondrial resistance to injury and phosphorylation of mitochondrial Connexin-43. Journal of Molecular and Cellular Cardiology, 2008, 44, 789-790.	0.9	1
41	Connexin43 Expression Levels Influence Intercellular Coupling and Cell Proliferation of Native Murine Cardiac Fibroblasts. Cell Communication and Adhesion, 2008, 15, 289-303.	1.0	53
42	High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. Journal of Molecular and Cellular Cardiology, 2007, 42, 222-233.	0.9	66
43	Chromatin compaction and cell death by high molecular weight FGF-2 depend on its nuclear localization, intracrine ERK activation, and engagement of mitochondria. Journal of Cellular Physiology, 2007, 213, 690-698.	2.0	29
44	The role of connexins in controlling cell growth and gene expression. Progress in Biophysics and Molecular Biology, 2007, 94, 245-264.	1.4	147
45	Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: Potential therapeutic implications in reversing cardiac remodeling?. Molecular and Cellular Biochemistry, 2007, 297, 65-72.	1.4	52
46	Fibroblast growth factor-2 and cardioprotection. Heart Failure Reviews, 2007, 12, 267-277.	1.7	103
47	Administration of FGF-2 to the Heart Stimulates Connexin-43 Phosphorylation at Protein Kinase C Target Sites. Cell Communication and Adhesion, 2006, 13, 13-19.	1.0	27
48	High glucose protects embryonic cardiac cells against simulated ischemia. Molecular and Cellular Biochemistry, 2006, 284, 87-93.	1.4	21
49	Regulation of Connexin-43-Mediated Growth Inhibition by a Phosphorylatable Amino-Acid is Independent of Gap Junction-Forming Ability. Molecular and Cellular Biochemistry, 2006, 289, 201-207.	1.4	40
50	Fibroblast Growth Factor-2. Basic Science for the Cardiologist, 2006, , 145-166.	0.1	0
51	Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. Journal of Cell Science, 2004, 117, 507-514.	1.2	105
52	Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovascular Research, 2004, 62, 154-166.	1.8	50
53	Inhibition of TGF? signaling potentiates the FGF-2-induced stimulation of cardiomyocyte DNA synthesis. Cardiovascular Research, 2004, 64, 516-525.	1.8	10
54	Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovascular Research, 2004, 63, 458-466.	1.8	68

#	Article	IF	CITATIONS
55	Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovascular Research, 2004, 62, 548-557.	1.8	40
56	Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor-2. Canadian Journal of Physiology and Pharmacology, 2004, 82, 1044-1052.	0.7	21
57	Effects of Ischemia on Cardiomyocyte Connexin-43 Distribution and Phosphorylation Studied in in vitro Models. Progress in Experimental Cardiology, 2004, , 257-268.	0.0	0
58	Title is missing!. Molecular and Cellular Biochemistry, 2003, 246, 111-116.	1.4	11
59	Title is missing!. Molecular and Cellular Biochemistry, 2003, 242, 129-134.	1.4	45
60	The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Molecular and Cellular Biochemistry, 2003, 242, 35-38.	1.4	172
61	Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovascular Research, 2003, 57, 8-19.	1.8	184
62	Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin. , 2003, , 129-134.		23
63	High levels of CUG-initiated FGF-2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death. , 2003, , 111-116.		7
64	The Application of Genetic Mouse Models to Elucidate a Role for Fibroblast Growth Factor-2 in the Mammalian Cardiovascular System. Progress in Experimental Cardiology, 2003, , 373-391.	0.0	0
65	The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Molecular and Cellular Biochemistry, 2003, 242, 35-8.	1.4	86
66	Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin. Molecular and Cellular Biochemistry, 2003, 242, 129-34.	1.4	22
67	High levels of CUG-initiated FGF-2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death. Molecular and Cellular Biochemistry, 2003, 246, 111-6.	1.4	4
68	Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1071-H1080.	1.5	80
69	Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T cell dependent. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H547-H555.	1.5	32
70	Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1039-H1050.	1.5	66
71	CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro. Journal of Cellular Physiology, 2001, 186, 457-467.	2.0	22
72	Elevation in Phosphatidylethanolamine Is an Early but Not Essential Event for Cardiac Cell Differentiation. Experimental Cell Research, 2000, 256, 358-364.	1.2	13

#	Article	IF	CITATIONS
73	The ε Subtype of Protein Kinase C Is Required for Cardiomyocyte Connexin-43 Phosphorylation. Circulation Research, 2000, 86, 293-301.	2.0	175
74	Lysophosphatidylethanolamine acyltransferase activity is elevated during cardiac cell differentiation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1485, 1-10.	1.2	16
75	α1-Adrenergic stimulation of FGF-2 promoter in cardiac myocytes and in adult transgenic mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H826-H833.	1.5	12
76	Immunolocalization of the sarcolemmal Ca2+/Mg2+ ecto-ATPase (myoglein) in rat myocardium. Molecular and Cellular Biochemistry, 1999, 197, 187-194.	1.4	6
77	Fibroblast growth factor-2 stimulates phospholipase $\hat{Cl^2}$ in adult cardiomyocytes. Biochemistry and Cell Biology, 1999, 77, 569-575.	0.9	24
78	The Subcellular Distribution of Protein Kinase Cα, -Ϊμ, and -ζ Isoforms during Cardiac Cell Differentiation. Archives of Biochemistry and Biophysics, 1999, 367, 17-25.	1.4	9
79	Cardiomyocyte Gap Junctions: A Target of Growth-Promoting Signaling. Trends in Cardiovascular Medicine, 1998, 8, 180-187.	2.3	11
80	Protection Against Myocardial Ischemic/Reperfusion Injury by Inhibitors of Two Separate Pathways of Na+Entry. Journal of Molecular and Cellular Cardiology, 1998, 30, 829-835.	0.9	42
81	FGF-2-induced Negative Inotropism and Cardioprotection are Inhibited by Chelerythrine: Involvement of Sarcolemmal Calcium-independent Protein Kinase C. Journal of Molecular and Cellular Cardiology, 1998, 30, 2695-2709.	0.9	59
82	Title is missing!. Molecular and Cellular Biochemistry, 1997, 176, 153-161.	1.4	0
83	Title is missing!. Molecular and Cellular Biochemistry, 1997, 176, 89-97.	1.4	16
84	Expression of fibroblast growth factor receptor-1 in rat heart H9c2 myoblasts increases cell proliferation. , 1997, , 89-97.		0
85	Cell-cycle dependent anti-FGF-2 staining of chicken cardiac myocytes: Movement from chromosomal to cleavage furrow- and midbody-associated sites. , 1997, , 153-161.		0
86	Cardioprotection and Basic Fibroblast Growth Factor. Developments in Cardiovascular Medicine, 1996, , 501-518.	0.1	2
87	High and Low Molecular Weight Fibroblast Growth Factor-2 Increase Proliferation of Neonatal Rat Cardiac Myocytes but Have Differential Effects on Binucleation and Nuclear Morphology. Circulation Research, 1996, 78, 126-136.	2.0	111
88	Fibroblast Growth Factor-2 Decreases Metabolic Coupling and Stimulates Phosphorylation as Well as Masking of Connexin43 Epitopes in Cardiac Myocytes. Circulation Research, 1996, 79, 647-658.	2.0	89
89	Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Molecular and Cellular Biochemistry, 1995, 143, 129-135.	1.4	92
90	Basic fibroblast growth factor stimulates connexin-43 expression and intercellular communication of cardiac fibroblasts. Molecular and Cellular Biochemistry, 1995, 143, 81-87.	1.4	86

#	Article	IF	CITATIONS
91	Regulation of Basic Fibroblast Growth Factor (BFGF) and FGF Receptors in the Heart. Annals of the New York Academy of Sciences, 1995, 752, 353-369.	1.8	39
92	Characterization of Fibroblast Growth Factor Receptor 1 RNA Expression in the Embryonic Mouse Heart. Annals of the New York Academy of Sciences, 1995, 752, 406-416.	1.8	10
93	Over-expression of CUG- or AUG-initiated Forms of Basic Fibroblast Growth Factor in Cardiac Myocytes Results in Similar Effects on Mitosis and Protein Synthesis but Distinct Nuclear Morphologies. Journal of Molecular and Cellular Cardiology, 1994, 26, 1045-1060.	0.9	51
94	Cloning and Expression of Fibroblast Growth Factor Receptor-1 Isoforms in the Mouse Heart: Evidence for Isoform Switching During Heart Development. Journal of Molecular and Cellular Cardiology, 1994, 26, 1449-1459.	0.9	52
95	Perinatal Phenotype and Hypothyroidism Are Associated with Elevated Levels of 21.5- to 22-kDa Basic Fibroblast Growth Factor in Cardiac Ventricles. Developmental Biology, 1993, 157, 507-516.	0.9	34
96	Increased Basic Fibroblast Growth Factor (bFGF) Accumulation and Distinct Patterns of Localization in Isoproterenol-Induced Cardiomyocyte Injury. Growth Factors, 1993, 8, 291-306.	0.5	49
97	Basic fibroblast growth factor in cardiac myocytes: expression and effects. Developments in Cardiovascular Medicine, 1993, , 55-75.	0.1	11
98	Identification of basic fibroblast growth factor-like proteins in African trypanosomes and Leishmania. Molecular and Biochemical Parasitology, 1992, 51, 171-181.	0.5	12
99	Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Developmental Biology, 1991, 147, 96-109.	0.9	129
100	Basic Fibroblast Growth Factor in Cultured Cardiac Myocytes. Annals of the New York Academy of Sciences, 1991, 638, 244-255.	1.8	26
101	Immunolocalization of basic fibroblast growth factor (bFGF) in growing and growth-inhibited placental cells: A possible role for bFGF in placental cell development. Placenta, 1991, 12, 341-352.	0.7	46
102	A Potential New Role for bFGF in Host-Parasite Interactions. Growth Factors, 1990, 4, 61-68.	0.5	4
103	Stimulation and inhibition of cardiac myocyte proliferation in vitro. Molecular and Cellular Biochemistry, 1990, 92, 129-35.	1.4	94
104	Characterization of two Preparations of Antibodies to Basic Fibroblast Growth Factor which Exhibit Distinct Patterns of Immunolocalization. Growth Factors, 1990, 4, 69-80.	0.5	38
105	Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochemical and Biophysical Research Communications, 1990, 173, 1116-1122.	1.0	18
106	Heparin inhibits skeletal muscle growth in vitro. Developmental Biology, 1988, 126, 19-28.	0.9	44
107	Effect of butyrate on thyroid hormone-mediated gene expression in rat pituitary tumour cells. Molecular and Cellular Endocrinology, 1988, 56, 263-270.	1.6	20
108	Selected muscle and nerve extracts contain an activity which stimulates myoblast proliferation and which is distinct from transferrin. Developmental Biology, 1985, 112, 353-358.	0.9	34

#	Article	IF	CITATIONS
109	Fast and slow chicken skeletal muscles contain different $\hat{I}\pm$ and \hat{I}^2 tropomyosins. Biochemical and Biophysical Research Communications, 1983, 110, 147-154.	1.0	15
110	Classification of tropomyosin components into an α-like or a β-like family by partial peptide mapping. FEBS Letters, 1983, 163, 250-256.	1.3	3