Shen-jin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927140/publications.pdf

Version: 2024-02-01

15 papers	163 citations	7 h-index	1125743 13 g-index
15	15	15	155
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	16775-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO_4 amplifier in KBBF. Optics Letters, 2015, 40, 3268.	3.3	37
2	2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Physics Letters, 2016, 13, 035401.	1.4	25
3	Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 885-913.	2.6	21
4	DUV/VUV All-Solid-State Lasers: Twenty Years of Progress and the Future. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-12.	2.9	15
5	Narrow Linewidth 177.3-nm Nanosecond Laser With High Efficiency and High Power. IEEE Photonics Technology Letters, 2014, 26, 980-982.	2.5	14
6	Evidence of Electron-Hole Imbalance in WTe ₂ from High-Resolution Angle-Resolved Photoemission Spectroscopy. Chinese Physics Letters, 2017, 34, 097305.	3.3	12
7	High-Efficiency 2-mJ 5-kHz Picosecond Green Laser Generation by Nd:YAG Innoslab Amplifier. IEEE Photonics Technology Letters, 2015, 27, 1531-1534.	2.5	8
8	All-solid-state ultraviolet 330 nm laser from frequency-doubling of Nd:YLF red laser in CsB 3 O 5. Journal of Luminescence, 2016, 172, 254-257.	3.1	8
9	High power all solid state VUV lasers. Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 20-23.	1.7	7
10	Narrow-Linewidth 100-W-Level Microsecond TEM ₀₀ Nd:YAG Twisted-Mode Laser. IEEE Photonics Technology Letters, 2017, 29, 2095-2098.	2.5	5
11	A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy. Chinese Physics Letters, 2012, 29, 064206.	3.3	4
12	A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy. Chinese Physics B, 2013, 22, 064212.	1.4	4
13	High-Power High-Beam-Quality 330-nm Laser From a Frequency-Quadrupled Nd:YAG Laser. IEEE Photonics Technology Letters, 2016, 28, 767-770.	2.5	2
14	High-Energy Single-Frequency Millisecond 1336.630-nm Nd:LGGG Amplifier (April 2017). IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	1
15	Picosecond 175 & amp; #x223C; 210 nm tunable deep-ultraviolet laser., 2013,,.		0