List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3926558/publications.pdf Version: 2024-02-01

MIN SONC

#	Article	IF	CITATIONS
1	Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering Reports, 2018, 133, 1-59.	14.8	401
2	Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Materials and Design, 2017, 116, 438-447.	3.3	167
3	Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1131-1137.	2.6	159
4	BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture. Journal of Materials Chemistry A, 2017, 5, 6622-6629.	5.2	159
5	Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon, 2018, 135, 224-235.	5.4	147
6	Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Materials and Design, 2017, 120, 56-65.	3.3	142
7	Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics, 2018, 94, 165-171.	1.8	139
8	Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42233-42240.	4.0	127
9	Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy. Scripta Materialia, 2007, 56, 305-308.	2.6	122
10	Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Materials Characterization, 2018, 144, 605-610.	1.9	114
11	Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6537-6542.	2.6	105
12	Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon, 2019, 153, 52-61.	5.4	104
13	Elastic modulus of phases in Ti–Mo alloys. Materials Characterization, 2015, 106, 302-307.	1.9	103
14	Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 356-362.	2.6	102
15	Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scripta Materialia, 2019, 162, 345-349.	2.6	99
16	Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf. Acta Materialia, 2017, 131, 271-279.	3.8	98
17	Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites. Journal of Materials Engineering and Performance, 2011, 20, 1606-1612.	1.2	97
18	Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Transactions of Nonferrous Metals Society of China, 2009, 19, 1400-1404.	1.7	95

#	Article	IF	CITATIONS
19	Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling. Materials and Design, 2016, 100, 58-66.	3.3	89
20	Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	4.7	89
21	Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138776.	2.6	84
22	Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 282-288.	2.6	82
23	Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon, 2018, 139, 459-471.	5.4	82
24	Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Materials & Design, 2013, 47, 706-710.	5.1	79
25	Powder metallurgical low-modulus Ti–Mg alloys for biomedical applications. Materials Science and Engineering C, 2015, 56, 241-250.	3.8	79
26	Structure and Fieldâ€Emission Properties of Subâ€Micrometerâ€Sized Tungstenâ€Whisker Arrays Fabricated by Vapor Deposition. Advanced Materials, 2009, 21, 2387-2392.	11.1	77
27	Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium. Scripta Materialia, 2017, 132, 63-67.	2.6	73
28	Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites. Carbon, 2020, 159, 201-212.	5.4	73
29	Fabrication, microstructure and mechanical properties of Al–Fe intermetallic particle reinforced Al-based composites. Journal of Alloys and Compounds, 2015, 618, 537-544.	2.8	68
30	Proposed mechanism of HCP → FCC phase transition in titianium through first principles calculation and experiments. Scientific Reports, 2018, 8, 1992.	d 1.6	68
31	Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties. Composites Part B: Engineering, 2021, 211, 108646.	5.9	65
32	Effects of Cu and Al on the crystal structure and composition of Î∙ (MgZn2) phase in over-aged Al–Zn–Mg–Cu alloys. Journal of Materials Science, 2012, 47, 5419-5427.	1.7	64
33	Fabrication of Ti–Al3Ti core–shell structured particle reinforced Al based composite with promising mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 269-273.	2.6	64
34	Atomistic structure of Cu-containing β″ precipitates in an Al–Mg–Si–Cu alloy. Scripta Materialia, 2014, 75, 86-89.	2.6	63
35	Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion. Scientific Reports, 2017, 7, 46720.	1.6	63
36	Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion. Materials Characterization, 2017, 127, 111-115.	1.9	62

#	Article	IF	CITATIONS
37	Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber. Applied Surface Science, 2019, 493, 1083-1089.	3.1	59
38	Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Applied Materials Today, 2020, 18, 100498.	2.3	59
39	Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2019, 792, 170-179.	2.8	58
40	Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 443, 172-177.	2.6	57
41	Synthesis of Ti–Ta alloys with dual structure by incomplete diffusion between elemental powders. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 302-312.	1.5	57
42	Effects of particle size on the fracture toughness of SiCp/Al alloy metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 601-607.	2.6	55
43	Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 289-294.	2.6	54
44	Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139001.	2.6	53
45	Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Materials Characterization, 2018, 136, 272-280.	1.9	51
46	Effect of VC and NbC additions on microstructure and properties of ultrafine WC-10Co cemented carbides. Transactions of Nonferrous Metals Society of China, 2009, 19, 1520-1525.	1.7	48
47	Precipitation sequence of an aged Al-Mg-Si alloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 2010, 46, 171-180.	0.3	48
48	Plasmon Enhancement Effect in Au Gold Nanorods@Cu ₂ O Core–Shell Nanostructures and Their Use in Probing Defect States. Langmuir, 2015, 31, 1537-1546.	1.6	46
49	Dynamic recrystallization behaviors of high Mg alloyed Al-Mg alloy during high strain rate rolling deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 59-69.	2.6	46
50	Shearing and rotation of β″ and βʹ precipitates in an Al-Mg-Si alloy under tensile deformation: In-situ and ex-situ studies. Acta Materialia, 2021, 220, 117310.	3.8	46
51	Effects of Er on the microstructure and mechanical properties of an as-extruded Al–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 504, 183-187.	2.6	44
52	Effects of Alloying Elements on Microstructure and Properties of Magnesium Alloys for Tripling Ball. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4793-4803.	1.1	44
53	Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100-xFex high entropy alloys processed by spark plasma sintering. Intermetallics, 2018, 103, 1-11.	1.8	44
54	Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behavior of an Al–Zn–Mg alloy. Journal of Materials Science, 2008, 43, 5265-5273.	1.7	42

#	Article	IF	CITATIONS
55	Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 474, 371-375.	2.6	42
56	Hot deformation behavior and microstructural evolution of Ag-containing 2519 aluminum alloy. Materials & Design, 2010, 31, 2171-2176.	5.1	42
57	A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 16-27.	2.6	42
58	Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. Journal of Materials Research, 2016, 31, 3815-3823.	1.2	41
59	Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys. Materials Characterization, 2016, 118, 352-362.	1.9	41
60	Effects of solid solution elements on damping capacities of binary magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138707.	2.6	39
61	In situ formed core–shell structured particle reinforced aluminum matrix composites. Materials & Design, 2014, 56, 405-408.	5.1	38
62	Effect of melting modes on microstructure and tribological properties of selective laser melted AlSi10Mg alloy. Virtual and Physical Prototyping, 2020, 15, 570-582.	5.3	38
63	High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications, 2022, 13, .	5.8	38
64	Effects of die-pressing pressure and extrusion on the microstructures and mechanical properties of SiC reinforced pure aluminum composites. Materials & Design, 2010, 31, 985-989.	5.1	37
65	Grain refinement and phase transition of commercial pure zirconium processed by cold rolling. Materials Characterization, 2017, 129, 149-155.	1.9	36
66	Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation. Micron, 2018, 105, 93-97.	1.1	36
67	Improving the mechanical properties of a ZM61 magnesium alloy by pre-rolling and high strain rate rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 478-484.	2.6	36
68	Synthesis and Morphology Evolution of Ultrahigh Content Nitrogenâ€Doped, Microporeâ€Dominated Carbon Materials as Highâ€Performance Supercapacitors. ChemSusChem, 2018, 11, 3932-3940.	3.6	36
69	Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scripta Materialia, 2014, 72-73, 35-38.	2.6	35
70	Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. Carbon, 2016, 96, 904-910.	5.4	35
71	Texture, Microstructure and Mechanical Properties of 6111 Aluminum Alloy Subject to Rolling Deformation. Materials Research, 2017, 20, 1360-1368.	0.6	35
72	Three dimensional crystallographic orientation relationships for hexagonal close packed structure to face centered cubic structure transformation in pure titanium. Scripta Materialia, 2019, 169, 46-51.	2.6	35

#	Article	IF	CITATIONS
73	CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening. Science China Materials, 2020, 63, 288-299.	3.5	35
74	Effects of Zr Content on the Yield Strength of an Al-Sc Alloy. Journal of Materials Engineering and Performance, 2011, 20, 377-381.	1.2	34
75	Effects of Cu content on the precipitation process of Al–Zn–Mg alloys. Journal of Materials Science, 2012, 47, 8174-8187.	1.7	34
76	Compositionally gradient Ti-Ta metal-metal composite with ultra-high strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 386-393.	2.6	34
77	Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles. Materials Research Bulletin, 2020, 126, 110837.	2.7	34
78	Effect of Size and Aspect Ratio on the Mechanical Properties of ZrAlNiCuNb Metallic Glass. Rare Metal Materials and Engineering, 2012, 41, 762-766.	0.8	33
79	Linking the thermal characteristics and mechanical properties of Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 663, 867-871.	2.8	33
80	Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo _{0.15} high-entropy alloy. Philosophical Magazine, 2017, 97, 3229-3245.	0.7	33
81	Abnormal internal friction in the in-situ Ti60Zr15V10Cu5Be10 metallic glass matrix composite. Journal of Alloys and Compounds, 2017, 724, 921-931.	2.8	33
82	Extraordinary tensile properties of titanium alloy with heterogeneous phase-distribution based on hetero-deformation induced hardening. Materials Research Letters, 2020, 8, 254-260.	4.1	33
83	Acquiring well balanced strength and ductility of Cu/CNTs composites with uniform dispersion of CNTs and strong interfacial bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 144-152.	2.6	32
84	Effects of Mo-doping on the microstructure and mechanical properties of CoCrNi medium entropy alloy. Journal of Materials Research, 2020, 35, 2726-2736.	1.2	32
85	Effects of Yb on the mechanical properties and microstructures of an Al–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 519-523.	2.6	31
86	Phase transition induced high strength and large ductility of a hot rolled near β Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Scripta Materialia, 2019, 170, 34-37.	2.6	31
87	High strength and large ductility of a fine-grained Al–Mg alloy processed by high strain rate hot rolling and cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139481.	2.6	30
88	Modeling the Age-Hardening Behavior of SiC/Al Metal Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 638-648.	1.1	29
89	Improving the plasticity of bulk metallic glasses via pre-compression below the yield stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 68-76.	2.6	29
90	Deformation induced dynamic recrystallization and precipitation strengthening in an MgZnMn alloy processed by high strain rate rolling. Materials Characterization, 2016, 121, 135-138.	1.9	29

#	Article	IF	CITATIONS
91	Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium. Journal of Materials Science and Technology, 2020, 41, 139-148.	5.6	28
92	Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy. Journal of Alloys and Compounds, 2021, 865, 158892.	2.8	28
93	Multiple Covalent Triazine Frameworks with Strong Polysulfide Chemisorption for Enhanced Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2777-2781.	1.7	27
94	Deformation behaviors of a hot rolled near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 390-399.	2.6	27
95	Strain direction dependency of deformation mechanisms in an HCP-Ti crystalline by molecular dynamics simulations. Computational Materials Science, 2020, 172, 109328.	1.4	27
96	Experimental and Modeling of the Coupled Influences of Variously Sized Particles on the Tensile Ductility of SiC p /Al Metal Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2127-2137.	1.1	26
97	Multi-scale model for the ductility of multiple phase materials. Mechanics of Materials, 2009, 41, 622-633.	1.7	26
98	Microstructural evolution of Cu–Al alloys subjected to multi-axial compression. Materials Characterization, 2015, 103, 107-119.	1.9	26
99	Effects of annealing on the microstructural evolution and phase transition in an AlCrCuFeNi2 high-entropy alloy. Micron, 2017, 101, 69-77.	1.1	26
100	Improving the strength and retaining the ductility of microstructural graded coarse-grained materials with low stacking fault energy. Materials and Design, 2018, 160, 21-33.	3.3	26
101	Short-range ordering induced serrated flow in a carbon contained FeCoCrNiMn high entropy alloy. Micron, 2019, 126, 102739.	1.1	26
102	Altered microstructural evolution and mechanical properties of CoCrFeNiMo0.15 high-entropy alloy by cryogenic rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 574-582.	2.6	25
103	Chemical anchoring of SeS ₂ on a fluoro-substituted covalent organic framework as a high-performance cathode material. Chemical Communications, 2019, 55, 13247-13250.	2.2	25
104	Liquid metal embrittlement susceptibility of a high-entropy alloy exposed to oxygen-depleted liquid lead-bismuth eutectic at 250 and 350â€Â°C. Journal of Nuclear Materials, 2020, 528, 151859.	1.3	25
105	Tribological and biological behaviors of laser cladded Ti-based metallic glass composite coatings. Applied Surface Science, 2020, 507, 145104.	3.1	25
106	Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scripta Materialia, 2016, 125, 49-53.	2.6	24
107	Strengthening the FeCoCrNiMo0.15 high entropy alloy by a gradient structure. Journal of Alloys and Compounds, 2020, 841, 155688.	2.8	24
108	Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite. Journal of Materials Engineering and Performance, 2012, 21, 373-381.	1.2	23

#	Article	IF	CITATIONS
109	Deformation Twinning and Detwinning in Face entered Cubic Metallic Materials. Advanced Engineering Materials, 2020, 22, 1900479.	1.6	23
110	Yield stress of SiC reinforced aluminum alloy composites. Journal of Materials Science, 2010, 45, 4097-4110.	1.7	22
111	Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD. Nanotechnology, 2011, 22, 405704.	1.3	22
112	⟨c + a⟩ dislocations shearing (0001)α plate precipitates in an Mg-Zn-Mn alloy. Scripta Materialia, 2019, 24-28.	170, 2.6	22
113	Effects of low temperature aging precipitates on damping and mechanical properties of ZK60 magnesium alloy. Journal of Alloys and Compounds, 2020, 819, 152961.	2.8	22
114	Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling. Journal of Materials Science and Technology, 2020, 49, 211-223.	5.6	22
115	altimg="si3.svg"> <mml:mrow><mml:mfenced <br="" close="}">open="{"><mml:mrow><mml:mn>11</mml:mn><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo stretchy="true">Å_/mml:mo>>22223</mml:mo </mml:mover </mml:mrow></mml:mfenced></mml:mrow>	5.6	22 th
116	twin boundary and the corresponding stress accommodation mechanisms in pure titanium. Journal of Liquid metal embrittlement of a dual-phase Al0.7CoCrFeNi high-entropy alloy exposed to oxygen-saturated lead-bismuth eutectic. Scripta Materialia, 2021, 194, 113652.	2.6	22
117	The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy. Journal of Magnetism and Magnetic Materials, 2015, 381, 322-327.	1.0	21
118	Creep of granular ice with and without dispersed particles. Journal of Glaciology, 2005, 51, 210-218.	1.1	20
119	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mo stretchy="false">{<mml:mn>10<arml:mover accent="true"><mml:mn>1<ar< mml:mo=""><mml:mn>1><td>5.6</td><td>20</td></mml:mn></ar<></mml:mn></arml:mover </mml:mn></mml:mo 	5.6	20
120	Dynamic deformation behavior and microstructure evolution of CoCrNiMox medium entropy alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142048.	2.6	20
121	A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology, 2021, 32, 105701.	1.3	20
122	Effect of thermomechanical treatment on the mechanical properties of an Al–Cu–Mg alloy. Materials & Design, 2009, 30, 857-861.	5.1	19
123	Ni-AlxNiy core–shell structured particle reinforced Al-based composites fabricated by in-situ powder metallurgy technique. Materials Chemistry and Physics, 2015, 160, 352-358.	2.0	19
124	A detailed appraisal of the stress exponent used for characterizing creep behavior in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 53-59.	2.6	19
125	On the effect of cooling rate during melt spinning of FINEMET ribbons. Nanoscale, 2013, 5, 7520.	2.8	18
126	Preparation and Pore Structure Stability at High Temperature of Porous Fe-Al Intermetallics. Journal of Materials Engineering and Performance, 2013, 22, 3959-3966.	1.2	18

#	Article	IF	CITATIONS
127	On the atomic model of Guinier-Preston zones in Al-Mg-Si-Cu alloys. Journal of Alloys and Compounds, 2018, 745, 644-650.	2.8	18
128	Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase. Materials Research Express, 2018, 5, 095013.	0.8	18
129	Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering. Materials Research Express, 2019, 6, 0865e7.	0.8	18
130	Mechanical properties and microstructures of Al-10Mg-4.5Si matrix composites reinforced by carbon nanotubes. Journal of Alloys and Compounds, 2019, 792, 860-868.	2.8	18
131	Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling. Journal of Alloys and Compounds, 2022, 908, 164677.	2.8	18
132	Effects of Ag addition on mechanical properties and microstructures of Al-8Cu-0.5Mg alloy. Transactions of Nonferrous Metals Society of China, 2006, 16, 766-771.	1.7	17
133	The effect of annealing on the mechanical properties of a ZrAlNiCu metallic glass. Journal of Non-Crystalline Solids, 2011, 357, 1239-1241.	1.5	17
134	Simulation of the electron diffraction patterns from needle/rod-like precipitates in Al–Mg–Si alloys. Materials Characterization, 2011, 62, 894-903.	1.9	17
135	An investigation of the mechanical behaviors of micro-sized tungsten whiskers using nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 278-286.	2.6	17
136	Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle. Materials Characterization, 2020, 170, 110666.	1.9	17
137	The tension-compression asymmetry of martensite phase transformation in a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Science China Materials, 2020, 63, 1797-1807.	3.5	17
138	Effect of Minor Cu Addition on the Precipitation Sequence of an As-Cast Al-Mg-Si 6005 Alloy. Archives of Metallurgy and Materials, 2012, 57, .	0.6	16
139	Inhomogeneous creep deformation in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 57-60.	2.6	16
140	Influence of deformation microstructure on the precipitation behaviors of an Al-4Mg-0.3Cu alloy. Journal of Alloys and Compounds, 2017, 695, 2238-2245.	2.8	16
141	Mechanisms for nucleation and propagation of incoherent twins in a CoCrFeNiMo 0.15 high-entropy alloy subject to cold rolling and annealing. Intermetallics, 2018, 96, 104-110.	1.8	16
142	Nitrogen doped Co-Cr-Mo-W based alloys fabricated by selective laser melting with enhanced strength and good ductility. Journal of Alloys and Compounds, 2019, 785, 305-311.	2.8	16
143	A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel. Materials Characterization, 2020, 170, 110693.	1.9	16
144	Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI. Intermetallics, 2020, 121, 106788.	1.8	16

#	Article	IF	CITATIONS
145	Influence of carburization on oxidation behavior of High Nb contained TiAl alloy. Surface and Coatings Technology, 2015, 277, 210-215.	2.2	15
146	Structural stability and magnetic properties of WFeH phases. International Journal of Hydrogen Energy, 2016, 41, 13093-13100.	3.8	15
147	Enhancing the mechanical properties of high strain rate rolled Mg–6Zn–1Mn alloy by pre-rolling. Journal of Materials Science, 2017, 52, 10557-10566.	1.7	15
148	Microstructure and mechanical properties of an MP159 alloy processed by torsional deformation and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140676.	2.6	15
149	Achieving high damping and excellent ductility of Al Mg alloy sheet by the coupling effect of Mg content and fine grain structure. Materials Characterization, 2021, 174, 110974.	1.9	15
150	The effect of particles on creep rate and microstructures of granular ice. Journal of Glaciology, 2008, 54, 533-537.	1.1	14
151	Investigation of the as-solidified microstructure of an Al–Mg–Si–Cu alloy. Journal of Alloys and Compounds, 2014, 602, 312-321.	2.8	14
152	Partial dislocation emission in a superfine grained Al–Mg alloy subject to multi-axial compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 189-193.	2.6	14
153	Correlation between hardness and shear banding of metallic glasses under nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 38-42.	2.6	14
154	Stability, adsorption, and diffusion of hydrogen in Pd3Ag phases. Journal of Membrane Science, 2016, 503, 124-131.	4.1	14
155	New orientations between β′2 phase and α matrix in a Mg-Zn-Mn alloy processed by high strain rate rolling. Journal of Alloys and Compounds, 2018, 750, 465-470.	2.8	14
156	Deformation mechanisms of mechanically induced phase transformations in iron. Computational Materials Science, 2019, 162, 12-20.	1.4	14
157	Dynamic recrystallization, texture and mechanical properties of high Mg content Al–Mg alloy deformed by high strain rate rolling. Transactions of Nonferrous Metals Society of China, 2021, 31, 2885-2898.	1.7	14
158	Effect of isothermal annealing on the compressive strength of a ZrAlNiCuNb metallic glass. Journal of Alloys and Compounds, 2011, 509, 2606-2610.	2.8	13
159	Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten. Transactions of Nonferrous Metals Society of China, 2015, 25, 3240-3246.	1.7	13
160	Effects of Sintering Atmosphere on the Mechanical Properties of Al-Fe Particle-Reinforced Al-Based Composites. Journal of Materials Engineering and Performance, 2015, 24, 1890-1896.	1.2	13
161	Combined effect of isothermal annealing and pre-compression on mechanical properties of Cu36Zr48Al8Ag8 bulk metallic glass. Transactions of Nonferrous Metals Society of China, 2016, 26, 1620-1628.	1.7	13
162	BODIPY modified g-C3N4 as a highly efficient photocatalyst for degradation of Rhodamine B under visible light irradiation. Journal of Solid State Chemistry, 2018, 267, 22-27.	1.4	13

#	Article	IF	CITATIONS
163	Effects of Î,′ precipitates on the mechanical performance and fracture behavior of an Al–Cu alloy subjected to overaged condition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138091.	2.6	13
164	Dynamic precipitation behavior before dynamic recrystallization in a Mg-Zn-Mn alloy during hot compression. Materials Characterization, 2019, 153, 14-23.	1.9	13
165	A good combination of strength and ductility of ultra-coarse-grained Cu-Al alloy with coarse-grained surface layer via pre-torsional treatment. Micron, 2020, 129, 102783.	1.1	13
166	An SEM-based approach to characterize the microstructural evolution in a gradient CoCrFeNiMo0.15 high-entropy alloy. Materials Characterization, 2020, 161, 110169.	1.9	13
167	Flow behavior and dynamic transformation of bimodal TC17 titanium alloy during high strain rate hot compression. Journal of Alloys and Compounds, 2022, 912, 165260.	2.8	13
168	Effect of Ce on the thermal stability of the Ω phase in an Al-Cu-Mg-Ag alloy. Rare Metals, 2009, 28, 156-159.	3.6	12
169	Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. Journal of Crystal Growth, 2011, 316, 137-144.	0.7	12
170	The evolution of local mechanical properties of bulk metallic glasses caused by structural inhomogeneity. Journal of Alloys and Compounds, 2014, 591, 315-319.	2.8	12
171	Mechanism of Mechanically Induced Nanocrystallization of Amorphous FINEMET Ribbons During Milling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2718-2725.	1.1	12
172	Microstructural Evolution and Structure-Hardness Relationship in an Al-4wt.%Mg Alloy Processed by High-Pressure Torsion. Journal of Materials Engineering and Performance, 2016, 25, 1909-1915.	1.2	12
173	Mechanically induced phase transformation from hexagonal close-packed structure to face-centred cubic structure in hafnium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 660, 34-38.	2.6	12
174	A facile route to prepare dimeric BODIPY-based porous organic polymers using FeCl ₃ . New Journal of Chemistry, 2017, 41, 5263-5266.	1.4	12
175	Dimeric BODIPYs with different linkages: A systematic investigation on structure-properties relationship. Tetrahedron, 2017, 73, 6894-6900.	1.0	12
176	Effect of stacking fault energy on the split length of 9R phase in coarse-grained Cu-Al alloys. Materials Characterization, 2018, 142, 9-14.	1.9	12
177	Transformation of fracture mode of an Al-Mg-Si-Cu alloy subject to aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 201-207.	2.6	12
178	A comparison of the dry sliding wear behavior of NiCoCr medium entropy alloy with 316 stainless steel. Materials Characterization, 2020, 160, 110132.	1.9	12
179	High ductility and strong work-hardening behavior of Zn modified as-hot-rolled Al–Mg sheets. Journal of Alloys and Compounds, 2021, 854, 157079.	2.8	12
180	Regulating the interfacial reaction between carbon nanotubes and aluminum via copper nano decoration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141576.	2.6	12

#	Article	IF	CITATIONS
181	Nanoindentation creep of ultrafine-grained Al2O3 particle reinforced copper composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 80-85.	2.6	11
182	Phases in pure hafnium. Philosophical Magazine Letters, 2014, 94, 370-376.	0.5	11
183	Effects of sintering parameters on the hardness and microstructures of bulk bimodal titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 264-270.	2.6	11
184	Effect of Y2O3 doping on FCC to HCP phase transformation in cobalt produced by ball milling and spark plasma sintering. Powder Technology, 2018, 324, 1-4.	2.1	11
185	An investigation of the microstructural evolution and tensile properties of a nickel-based GH648 superalloy manufactured through selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139704.	2.6	11
186	The interactions between dynamic precipitates and dynamic recrystallization in Mg-5Zn-1Mn alloys during hot compression. Materials Characterization, 2020, 160, 110131.	1.9	11
187	Grain size dependent deformation behavior of a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Journal of Alloys and Compounds, 2021, 883, 160876.	2.8	11
188	Atomic-level study of { <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>Â⁻</mml:mo><mml:mn>1</mml:mn>deformation twinning in pure Ti and Ti-5at.% Al alloy. International Journal of Plasticity, 2022, 153, 102272</mml:mover </mml:mrow></mml:math>	ow≉s‡mml	:matth>}
189	The effect of particles on dynamic recrystallization and fabric development of granular ice during creep. Journal of Glaciology, 2005, 51, 377-382.	1.1	10
190	Grain refinement via formation and subdivision of microbands and thin laths structures in cold-rolled hafnium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 328-332.	2.6	10
191	Factors affecting the microstructure and mechanical properties of Ti-Al ₃ Ti core-shell-structured particle-reinforced Al matrix composites. Philosophical Magazine, 2016, 96, 1197-1211.	0.7	10
192	Fabricating a bulk FCC Hf by a combination of high-energy ball milling and spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2018, 75, 107-110.	1.7	10
193	Bimodal-Structured Al–Mg Alloy with High Strength and Ductility Processed by High Strain Rate Rolling at Medium Temperature. Metals and Materials International, 2021, 27, 5191-5198.	1.8	10
194	Controllable synthesis and tunable field-emission properties of tungsten oxide sub-micro fibers. International Journal of Refractory Metals and Hard Materials, 2012, 34, 47-52.	1.7	9
195	Effects of the β1′ precipitates on mechanical and damping properties of ZK60 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140730.	2.6	9
196	Enhanced microwave absorption performance of ultra-small Zn-doped Fe-C nanoparticles. Applied Physics Express, 2021, 14, 035005.	1.1	9
197	Electron beam irradiation induced metastable phase in a Mgâ^'9.8 wt%Sn alloy. Journal of Materials Science and Technology, 2021, 84, 133-138.	5.6	9
198	Effects of the addition of CNTs and Al alloying on the microstructure and properties of Cu-(Al)/CNTs composites. Diamond and Related Materials, 2021, 120, 108600.	1.8	9

#	Article	IF	CITATIONS
199	Development of a new cryogenic tribotester and its application to the study of cryogenic wear of AISI 316 stainless steel. Wear, 2022, 496-497, 204309.	1.5	9
200	Effects of Sc content on the mechanical properties of Al-Sc alloys. Rare Metals, 2010, 29, 451-455.	3.6	8
201	Influence of Al addition on the thermal stability and mechanical properties of Fe76.5-xCu1Si13.5b9Alx amorphous alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 2012, 48, 45-51.	0.3	8
202	Structure and field-emission properties of W/WO2.72 heterostructures fabricated by vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 260-265.	1.3	8
203	BODIPYâ€Based Porous Organic Polymers: How the Monomeric Methyl Substituents and Isomerization Affect the Porosity and Singlet Oxygen Generation. Macromolecular Chemistry and Physics, 2017, 218, 1700101.	1.1	8
204	Effects of Torsional Deformation on the Mechanical Properties and Microstructures of a Commercial Pure Copper. Journal of Materials Engineering and Performance, 2019, 28, 543-548.	1.2	8
205	Microstructural evolution and twinning behavior of a cold-rolled Zr70Ti30 alloy. Journal of Alloys and Compounds, 2019, 784, 954-960.	2.8	8
206	Grain refinement process in a cold-rolled polycrystalline cobalt. Materials Characterization, 2020, 164, 110360.	1.9	8
207	Precipitation and transformation of ${ m i} f$ phase in a selective laser melted high-chromium superalloy subjected to heat treatment. Micron, 2021, 149, 103113.	1.1	8
208	Initial experiments on the effects of particles at grain boundaries on the anelasticity and creep behavior of granular ice. Annals of Glaciology, 2004, 39, 397-401.	2.8	7
209	An investigation of the effects of particles on creep of polycrystalline ice. Scripta Materialia, 2006, 55, 91-94.	2.6	7
210	Effect of strain rate on the compressive behaviour of a Zr ₅₆ Al _{10.9} Ni _{4.6} Cu _{27.8} Nb _{0.7} bulk metallic glass. Philosophical Magazine Letters, 2010, 90, 763-770.	0.5	7
211	Effect of sub- <i>T</i> _g annealing on the mechanical properties of a ZrAlNiCuNb bulk metallic glass. Philosophical Magazine Letters, 2011, 91, 713-723.	0.5	7
212	Formation of nanocrystalline grain structure in an Mg-Gd-Y-Zr alloy processed by high-pressure torsion. Materials Characterization, 2022, 191, 112088.	1.9	7
213	Strength and ductility synergy in a laminated Cu/Cu-6Al alloy with graded interfacial region. Journal of Alloys and Compounds, 2022, 921, 166102.	2.8	7
214	An evaluation of the rate-controlling flow process in Newtonian creep of polycrystalline ice. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 27-31.	2.6	6
215	Experimental analysis to the structural relaxation of Ti48Zr20V12Cu5Be15 metallic glass matrix composite. Journal of Alloys and Compounds, 2018, 769, 443-452.	2.8	6
216	Toughening alpha-Ti by dislocation-induced phase transformation at crack tips. Mechanics of Materials, 2020, 151, 103629.	1.7	6

#	Article	IF	CITATIONS
217	Structural instability of plate-shaped Î,' precipitates in an aged Al-Cu alloy. Philosophical Magazine Letters, 2020, 100, 524-532.	0.5	6
218	Effects of strain rate and strain on microstructural evolution and mechanical properties of a Ti-10Âat.%Al alloy. Materials Characterization, 2021, 179, 111314.	1.9	6
219	Effect of quenching mode on the mechanical properties of a Zr64Al10Ni15Cu11 metallic glass. Materials & Design, 2010, 31, 3555-3558.	5.1	5
220	Evidence for a transition in deformation mechanism in nanocrystalline pure titanium processed by high-pressure torsion. Philosophical Magazine, 2016, 96, 1632-1642.	0.7	5
221	The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling. Journal of Materials Engineering and Performance, 2018, 27, 1130-1137.	1.2	5
222	BODIPYâ€based Carbonaceous Materials for High Performance Electrical Capacitive Energy Storage. Chemistry - an Asian Journal, 2018, 13, 3051-3056.	1.7	5
223	A new phase transformation route for the formation of metastable beta-Zr. Journal of Materials Science, 2021, 56, 2672-2683.	1.7	5
224	A comparison of the microstructures and mechanical properties of a GH648 superalloy fabricated by selective laser melting and casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 813, 141178.	2.6	5
225	Rate-dependent inhomogeneous creep behavior in metallic glasses. Transactions of Nonferrous Metals Society of China, 2021, 31, 1758-1765.	1.7	5
226	Effects of Al on crack propagation in titanium alloys and the governing toughening mechanism. Mechanics of Materials, 2021, 163, 104107.	1.7	5
227	A unified criterion for yielding behavior of metallic glasses. Central South University, 2011, 18, 1-5.	0.5	4
228	In situ growth of SiOx nanowires catalyzed by Bi on Si substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1688-1693.	1.3	4
229	Preparation of ultrafine WC-10Co composite powders by reduction and carbonization. Journal of Central South University, 2013, 20, 2090-2095.	1.2	4
230	Factors affecting the growth of micro/nano-sized tungsten whiskers synthesised by vapour deposition. Philosophical Magazine, 2013, 93, 584-597.	0.7	4
231	Stress accommodation by α to α″ transformation at the{101Â⁻1}twin boundary in a cold-rolled Ti-5at.% Al alloy. Materialia, 2019, 8, 100469.	1.3	4
232	A new double twinning mode in a cold-rolled Zr alloy. Philosophical Magazine Letters, 2019, 99, 21-28.	0.5	4
233	Dynamic Precipitation, Dynamic Recrystallization, and Texture Evolution of Mg–5Zn Alloy Sheets with Trace Ca and Sr Additions. Microscopy and Microanalysis, 2020, 26, 886-894.	0.2	4
234	Preparation, microstructure and properties of Cu-8.3Al/CNTs composites with different volume fractions of CNTs. Diamond and Related Materials, 2020, 107, 107912.	1.8	4

#	Article	IF	CITATIONS
235	Microstructural and hardness evolutions of a cold-rolled cobalt. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140712.	2.6	4
236	On the dual-stage partial recrystallization and the corresponding mechanical response of the Cantor alloy. Journal of Alloys and Compounds, 2022, 918, 165651.	2.8	4
237	Atomic-scale understanding of the reversible HCPaT_FCC phase transition mechanisms at <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow> <mml:mo> {</mml:mo> <mml:mrow> <mml:mn> 10 10</mml:mn> 1 > 1 1 <td>4.1 row><mml< td=""><td>4 :mo>}</td></mml<></td></mml:mrow></mml:mrow></mmi:math 	4.1 row> <mml< td=""><td>4 :mo>}</td></mml<>	4 :mo>}
238	Dislocation induced FCC twinning at the HCP/FCC interfaces in a deformed Ti-5at.%Al alloy: Experiments and simulations. Journal of Physics and Chemistry of Solids, 2022, 169, 110835.	1.9	4
239	Effects of Mg and Ag elements on the aging precipitation of binary Al-Cu alloy. Science in China Series D: Earth Sciences, 2006, 49, 582-589.	0.9	3
240	Structure dependent hardness and elastic modulus of FeCuSiBAl amorphous/nanocrystalline alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 974-976.	2.6	3
241	Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite. Journal of Materials Engineering and Performance, 2016, 25, 4631-4636.	1.2	3
242	Alloying effects of Ag on grain boundaries and alumina interfaces in copper: a first principles prediction. RSC Advances, 2017, 7, 48230-48237.	1.7	3
243	Effects of hot rolling, intermediate annealing and cold rolling on microstructure, texture and mechanical properties of an Al-Mg-Si-Cu alloy. Materials Research Express, 2018, 5, 106521.	0.8	3
244	Mechanical Properties and Microstructural Evolution of CuZn Alloys via Pre-Torsional Deformation. Materials Research, 2019, 22, .	0.6	3
245	Phase transition and hardness evolution of a Ti-5Al-5Mo-1Fe-1Cr alloy subjected to isothermal aging. Micron, 2019, 116, 15-21.	1.1	3
246	Deformation mechanism of pure hafnium under high speed compression. Materials Characterization, 2020, 169, 110639.	1.9	3
247	Microstructural Evolution and Phase Transformation of a Ti-5Nb-5Al Alloy During Annealing Treatment. Materials Research, 2019, 22, .	0.6	3
248	Microstructure and hardness of solution treated and cold-rolled Co75Cr25 alloy. Materials Characterization, 2021, 181, 111521.	1.9	3
249	A multi-scaled model for the fracture toughness of an aluminum alloy. Journal of Materials Science, 2007, 42, 4177-4182.	1.7	2
250	Flow Behavior and Microstructural Evolution of a 7039 Aluminum Alloy during Hot Deformation. Advanced Materials Research, 2011, 239-242, 2395-2398.	0.3	2
251	Mechanical Behaviors of Sic Particle Reinforced Al Matrix Composites: A Study Based on Finite Element Method. Advanced Materials Research, 2012, 535-537, 3-7.	0.3	2
252	Evolutions of the microstructure, texture and mechanical properties of a cold rolled Al-0.8Mg-0.8Si-0.66Cu-0.1Fe-0.12Cr alloy. Materials Research Express, 2019, 6, 106564.	0.8	2

#	Article	IF	CITATIONS
253	Microstructure evolution and mechanical properties of the ZM61 alloy sheets under different pre-rolling and high strain rate rolling temperatures. Journal of Materials Research, 2020, 35, 1817-1824.	1.2	2
254	Effects of tensile temperatures on phase transformations in zirconium by molecular dynamics simulations. Journal of Central South University, 2021, 28, 1932-1945.	1.2	2
255	Microstructural evolution of a polycrystalline cobalt during tensile deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141970.	2.6	2
256	Deformation-induced phase transformation and twinning in Fe and Fe–C alloys. Materials Science and Technology, 2021, 37, 1246-1256.	0.8	2
257	Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy. Central South University, 2007, 14, 456-459.	0.5	1
258	Simulation of the Elastic Modulus of Mo Alloys at Both Room and High Temperatures. Advanced Materials Research, 2013, 785-786, 81-85.	0.3	1
259	Microstructure and corrosion properties of SiC/Al-Mg-Cu-Si-Sn composites. Science and Engineering of Composite Materials, 2017, 24, 709-713.	0.6	1
260	Phase Transition and Twinning Induced High Strength and Large Ductility of a Near Î ² -Ti Alloy Processed by Double Aging. Journal of Materials Engineering and Performance, 2021, 30, 5914-5920.	1.2	1
261	Microstructure and Mechanical Properties of a MP159 Superalloy after Preâ€ŧensile Deformation and Subsequent Annealing. Advanced Engineering Materials, 0, , 2100920.	1.6	1
262	Ordered Sn distribution adjacent to the precipitate-matrix interface in a Mg–9.8wt.%Sn alloy. Journal of Magnesium and Alloys, 2022, , .	5.5	1
263	A mesomechanical ductility model of SiCp/Al composite. Central South University, 2006, 13, 325-331.	0.5	0
264	Effect of Severe Plastic Deformation on Microstructure and Properties of Al-Cu-Mg-Ag Aluminum Alloys. Materials Science Forum, 2010, 667-669, 599-604.	0.3	0
265	Mechanical Behavior of SiC Fiber Reinforced Al Matrix Composites: A Study Based on Finite Element Method. Advanced Materials Research, 0, 239-242, 2785-2789.	0.3	0
266	An Investigation of the Microstructures and Mechanical Properties of FeSiBCuAl Alloys. Advanced Materials Research, 0, 627, 646-650.	0.3	0
267	Fabrication of In Situ TiBCSi Composite by Hot-Press Sintering. Journal of Materials Engineering and Performance, 2013, 22, 651-654.	1.2	0
268	Cooling-rate-dependent microstructure and mechanical properties of a CuZrAlAg alloy. Philosophical Magazine Letters, 2014, 94, 716-723.	0.5	0
269	Simulation of the Yield Strength of Mo Alloys at Both Room and Elevated Temperatures. Advanced Materials Research, 0, 937, 130-135.	0.3	0
270	Microstructural Evolution of a Selective Laser Melted FeCoCrNiMn–(N,Si) Highâ€Entropy Alloy Subject to Coldâ€Rolling and Subsequent Annealing. Advanced Engineering Materials, 0, , 2200131.	1.6	0