Yasuyuki Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3926555/publications.pdf

Version: 2024-02-01

687363 752698 37 481 13 20 citations h-index g-index papers 41 41 41 503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design, Synthesis, and Anticancer Activity of Triptycene–Peptide Hybrids that Induce Paraptotic Cell Death in Cancer Cells. Bioconjugate Chemistry, 2022, 33, 691-717.	3.6	6
2	Significant Effect of Flexibility of Bridging Alkyl Chains onÂtheÂProximity of Stacked Porphyrin and Phthalocyanine Conjugated with Fourfold Rotaxane Linkage. Chemistry - A European Journal, 2022, , .	3.3	O
3	Front Cover: Significant Effect of the Flexibility of Bridging Alkyl Chains on the Proximity of Stacked Porphyrin and Phthalocyanine Conjugated with a Fourfold Rotaxane Linkage (Chem. Eur. J. 37/2022). Chemistry - A European Journal, 2022, 28, .	3.3	1
4	High catalytic methane oxidation activity of monocationic \hat{l} /4-nitrido-bridged iron phthalocyanine dimer with sixteen methyl groups. Dalton Transactions, 2021, 50, 6718-6724.	3.3	9
5	Synthesis of Bis{meso-Tetrakis(4-N-alkylpyridiniumyl)porphyrinato}cerium and Its Redox Switching Behavior. Molecules, 2021, 26, 790.	3.8	1
6	Synthesis and Anticancer Properties of Bis―and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. European Journal of Inorganic Chemistry, 2021, 2021, 1796-1814.	2.0	24
7	Application of μ-Nitrido- and μ-Carbido-Bridged Iron Phthalocyanine Dimers as Cathode-Active Materials for Rechargeable Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40612-40617.	8.0	13
8	Synthesis of a monocationic \hat{l} /4-nitrido-bridged iron porphycene dimer and its methane oxidation activity. Dalton Transactions, 2021, 50, 16775-16781.	3.3	7
9	Development of functional molecular assemblies based on programmable construction of face-to-face assemblies of metallo-porphyrinoids. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 197-213.	1.6	3
10	One-pot synthesis of cyclic oligosaccharides by the polyglycosylation of monothioglycosides. Carbohydrate Research, 2020, 487, 107888.	2.3	12
11	\hat{l} ¼-Nitrido-bridged iron phthalocyanine dimer bearing eight peripheral 12-crown-4 units and its methane oxidation activity. New Journal of Chemistry, 2020, 44, 19179-19183.	2.8	11
12	Design and Synthesis of Cyclometalated Iridium(III) Complexesâ€"Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorganic Chemistry, 2020, 59, 6905-6922.	4.0	9
13	Catalytic methane oxidation by a supramolecular conjugate based on a $\hat{1}\frac{1}{4}$ -nitrido-bridged iron porphyrinoid dimer. New Journal of Chemistry, 2019, 43, 11477-11482.	2.8	16
14	Improved synthesis of monocationic $\hat{l}/4\hat{a}$ "nitrido-bridged iron phthalocyanine dimer with no peripheral substituents. Inorganica Chimica Acta, 2019, 489, 160-163.	2.4	7
15	Siteâ€Selective Supramolecular Complexation Activates Catalytic Ethane Oxidation by a Nitridoâ€Bridged Iron Porphyrinoid Dimer. Chemistry - A European Journal, 2019, 25, 3369-3375.	3.3	21
16	Intramolecular strong electronic coupling in a discretely H-aggregated phthalocyanine dimer connected with a rigid linker. Chemical Communications, 2018, 54, 8226-8228.	4.1	15
17	Programmable arrangement of metal ions in a cofacially stacked assembly of porphyrinoids toward molecular tags. Dalton Transactions, 2018, 47, 7044-7049.	3.3	8
18	Electronic perturbation of supramolecular conjugates of porphyrins and phthalocyanines. Chemical Communications, 2017, 53, 2230-2232.	4.1	7

#	Article	IF	CITATIONS
19	Programmable Arrangement of Heterometal Ions in a Supramolecular Array of Porphyrin and Phthalocyanine. Bulletin of the Chemical Society of Japan, 2017, 90, 427-435.	3.2	15
20	Oxygen Reduction to Water by a Cofacial Dimer of Iron(III)–Porphyrin and Iron(III)–Phthalocyanine Linked through a Highly Flexible Fourfold Rotaxane. Chemistry - A European Journal, 2017, 23, 7508-7514.	3.3	39
21	Dynamic Molecular Invasion into a Multiply Interlocked Catenane. Angewandte Chemie, 2017, 129, 14312-14317.	2.0	2
22	Dynamic Molecular Invasion into a Multiply Interlocked Catenane. Angewandte Chemie - International Edition, 2017, 56, 14124-14129.	13.8	10
23	Stacked Pairing of Anionic Porphyrins on a Tetracationic Macrocyclic Template. Chemistry Letters, 2016, 45, 356-358.	1.3	1
24	Assembly of Multiâ€Phthalocyanines on a Porphyrin Template by Fourfold Rotaxane Formation. Chemistry - A European Journal, 2016, 22, 12371-12380.	3.3	18
25	Kinetically "locked―metallomacrocycle. Dalton Transactions, 2016, 45, 3831-3837.	3.3	11
26	Metal-induced dynamic conformational and fluorescence switch of quinone-appended Zn -porphyrin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 344-351.	0.8	4
27	Sequential and Spatial Organization of Metal Complexes Inside a Peptide Duplex. Journal of the American Chemical Society, 2014, 136, 6505-6509.	13.7	20
28	Crystal Structures of Stacked Ionic Assemblies of Tetracationic and Tetraanionic Porphyrins. Chemistry Letters, 2014, 43, 1377-1379.	1.3	10
29	Triply Stacked Heterogeneous Array of Porphyrins and Phthalocyanine through Stepwise Formation of a Fourfold Rotaxane and an Ionic Complex. Journal of the American Chemical Society, 2013, 135, 11505-11508.	13.7	43
30	Repetitive stepwise rotaxane formation toward programmable molecular arrays. Chemical Communications, 2013, 49, 11053.	4.1	18
31	Metal-Induced Structural Switching of a Folded Quinone-Sandwiched Porphyrin. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 180-185.	3.7	5
32	Synthesis of a hetero-dinuclear metal complex in a porphyrin/phthalocyanine four-fold rotaxane. Dalton Transactions, 2013, 42, 15873.	3.3	18
33	Harmony of π-π Stacking Interaction and Metal Complexation to Generate Molecular Functional Emergence. Bulletin of Japan Society of Coordination Chemistry, 2013, 62, 12-22.	0.2	1
34	Room-temperature single molecular memory. Applied Physics Letters, 2012, 100, 053101.	3.3	9
35	Switchable Intermolecular Communication in a Fourâ€Fold Rotaxane. Angewandte Chemie - International Edition, 2012, 51, 709-713.	13.8	67
36	Direct catalytic benzene hydroxylation under mild reaction conditions by using a monocationic \hat{l} /4-nitrido-bridged iron phthalocyanine dimer with 16 peripheral methyl groups. New Journal of Chemistry, 0, , .	2.8	2

#	Article	IF	CITATIONS
37	Significant Effect of the Flexibility of Bridging Alkyl Chains on the Proximity of Stacked Porphyrin and Phthalocyanine Conjugated with a Fourfold Rotaxane Linkage. Chemistry - A European Journal, 0, , .	3.3	1