
Luciano Senff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925960/publications.pdf Version: 2024-02-01

LUCIANO SENEE

#	Article	IF	CITATIONS
1	Role of chemical admixtures on 3D printed Portland cement: Assessing rheology and buildability. Construction and Building Materials, 2022, 314, 125666.	3.2	18
2	Unravelling the Affinity of Alkali-Activated Fly Ash Cubic Foams towards Heavy Metals Sorption. Materials, 2022, 15, 1453.	1.3	10
3	The Role of an Industrial Alkaline Wastewater in the Alkali Activation of Biomass Fly Ash. Applied Sciences (Switzerland), 2022, 12, 3612.	1.3	3
4	RECYCLING OF ASHES FROM BIOMASS COMBUSTION AS RAW MATERIAL FOR MORTARS. Mix SustentÃįvel, 2021, 7, 137-146.	0.0	1
5	Role of temperature in 3D printed geopolymers: Evaluating rheology and buildability. Materials Letters, 2021, 293, 129680.	1.3	23
6	Simple and effective route to tailor the thermal, acoustic and hygrothermal properties of cork-containing waste derived inorganic polymer composites. Journal of Building Engineering, 2021, 42, 102501.	1.6	7
7	PCM-containing bi-layered alkali-activated materials: A novel and sustainable route to regulate the temperature and humidity fluctuations inside buildings. Building and Environment, 2021, 205, 108281.	3.0	14
8	Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production. Construction and Building Materials, 2020, 239, 117805.	3.2	39
9	Multifunctional cork – alkali-activated fly ash composites: A sustainable material to enhance buildings' energy and acoustic performance. Energy and Buildings, 2020, 210, 109739.	3.1	33
10	3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering, 2020, 32, 101833.	1.6	84
11	Effect of Al anodizing waste on the final properties of porous geopolymers. Construction and Building Materials, 2020, 263, 120160.	3.2	3
12	Unexplored alternative use of calcareous sludge from the paper-pulp industry in green geopolymer construction materials. Construction and Building Materials, 2020, 246, 118457.	3.2	18
13	Bi-Layered Porous/Cork-Containing Waste-Based Inorganic Polymer Composites: Innovative Material towards Green Buildings. Applied Sciences (Switzerland), 2020, 10, 2995.	1.3	11
14	Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material. Sustainability, 2019, 11, 3481.	1.6	15
15	Novel biomass fly ash-based geopolymeric mortars using lime slaker grits as aggregate for applications in construction: Influence of granulometry and binder/aggregate ratio. Construction and Building Materials, 2019, 227, 116643.	3.2	26
16	In-depth investigation of the long-term strength and leaching behaviour of inorganic polymer mortars containing green liquor dregs. Journal of Cleaner Production, 2019, 220, 630-641.	4.6	12
17	Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cement and Concrete Composites, 2019, 97, 107-117.	4.6	38
18	Alkali-activated Fly Ash-based Mortars for Green Applications in Architecture and Civil Engineering. International Journal of Structural and Civil Engineering Research, 2019, , 1-9.	0.1	3

LUCIANO SENFF

#	Article	IF	CITATIONS
19	Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability. Journal of Material Cycles and Waste Management, 2018, 20, 1006-1015.	1.6	19
20	Development of multifunctional plaster using nano-TiO2 and distinct particle size cellulose fibers. Energy and Buildings, 2018, 158, 721-735.	3.1	18
21	Study of Zn-Pb ore tailings and their potential in cement technology. Journal of African Earth Sciences, 2018, 139, 165-172.	0.9	18
22	Upcycling unexplored dregs and biomass fly ash from the paper and pulp industry in the production of eco-friendly geopolymer mortars: A preliminary assessment. Construction and Building Materials, 2018, 184, 464-472.	3.2	40
23	Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy and Buildings, 2016, 127, 980-990.	3.1	24
24	Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Materials and Design, 2016, 108, 551-559.	3.3	102
25	The influence of TiO2 nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars. Construction and Building Materials, 2015, 75, 315-330.	3.2	21
26	Development of mortars containing superabsorbent polymer. Construction and Building Materials, 2015, 95, 575-584.	3.2	51
27	Influence of fired clay brick waste additions on the durability of mortars. Cement and Concrete Composites, 2015, 62, 82-89.	4.6	97
28	Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B: Engineering, 2015, 77, 1-9.	5.9	112
29	Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Processing Technology, 2015, 129, 192-202.	3.7	53
30	Mining tailing reuse in sulfobelitic clinker formulations. , 2015, , 183-188.		1
31	Functionalization of mortars for controlling the indoor ambient of buildings. Energy and Buildings, 2014, 70, 224-236.	3.1	43
32	The influence of porogene additives on the properties of mortars used to control the ambient moisture. Energy and Buildings, 2014, 74, 61-68.	3.1	35
33	Novel Inorganic Products Based on Industrial Wastes. Waste and Biomass Valorization, 2014, 5, 385-392.	1.8	10
34	The influence of TiO2 and ZnO powder mixtures on photocatalytic activity and rheological behavior of cement pastes. Construction and Building Materials, 2014, 65, 191-200.	3.2	43
35	Development of porogene-containing mortars for levelling the indoor ambient moisture. Ceramics International, 2014, 40, 15489-15495.	2.3	20
36	Influence of red mud addition on rheological behavior and hardened properties of mortars. Construction and Building Materials, 2014, 65, 84-91.	3.2	40

LUCIANO SENFF

#	Article	IF	CITATIONS
37	Lime mud from cellulose industry as raw material in cement mortars. Materiales De Construccion, 2014, 64, e033.	0.2	16
38	Mortar formulations with bottom ash from biomass combustion. Construction and Building Materials, 2013, 45, 275-281.	3.2	67
39	Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Composites Part B: Engineering, 2013, 44, 40-47.	5.9	69
40	Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 354-361.	2.6	210
41	Effect of diatomite addition on fresh and hardened properties of mortars investigated through mixture experiments. Advances in Applied Ceramics, 2011, 110, 142-150.	0.6	12
42	Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars. Construction and Building Materials, 2011, 25, 163-170.	3.2	81
43	Formulations of sulfobelite cement through design of experiments. Construction and Building Materials, 2011, 25, 3410-3416.	3.2	37
44	Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 2010, 24, 1432-1437.	3.2	186
45	Comportamento reológico de pastas de cimento com adição de sÃłica ativa, nanossÃłica e dispersante policarboxÃłico. Revista Materia, 2010, 15, 12-20.	0.1	10
46	Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars. Advances in Applied Ceramics, 2010, 109, 104-110.	0.6	45
47	Rheological characterisation of cement pastes with nanosilica, silica fume and superplasticiser additions. Advances in Applied Ceramics, 2010, 109, 213-218.	0.6	20
48	Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes. Advances in Applied Ceramics, 2009, 108, 418-428.	0.6	31
49	Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials, 2009, 23, 2487-2491.	3.2	551
50	Mortar composition defined according to rheometer and flow table tests using factorial designed experiments. Construction and Building Materials, 2009, 23, 3107-3111.	3.2	35