Pedro Gabriel Nachtigall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925882/publications.pdf

Version: 2024-02-01

		1040056	839539	
18	357	9	18	
papers	citations	h-index	g-index	
19	19	19	512	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Computational Detection of MicroRNA Targets. Methods in Molecular Biology, 2022, 2257, 187-209.	0.9	5
2	44 Current Challenges in miRNomics. Methods in Molecular Biology, 2022, 2257, 423-438.	0.9	6
3	<scp>MicroRNA</scp> roles in regeneration: Multiple lessons from zebrafish. Developmental Dynamics, 2022, 251, 556-576.	1.8	3
4	Differences in PLA2 Constitution Distinguish the Venom of Two Endemic Brazilian Mountain Lanceheads, Bothrops cotiara and Bothrops fonsecai. Toxins, 2022, 14, 237.	3.4	5
5	CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts. Briefings in Bioinformatics, 2021, 22, .	6.5	18
6	Leptospirosis diagnosis among patients suspected of dengue fever in Brazil. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2021, 27, e20200118.	1.4	5
7	MITGARD: an automated pipeline for mitochondrial genome assembly in eukaryotic species using RNA-seq data. Briefings in Bioinformatics, 2021, 22, .	6.5	15
8	A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks. BMC Genomics, 2021, 22, 153.	2.8	2
9	ToxCodAn: a new toxin annotator and guide to venom gland transcriptomics. Briefings in Bioinformatics, 2021, 22, .	6.5	9
10	Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the $\langle i \rangle$ Bothrops jararaca $\langle i \rangle$ genome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
11	Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom. Toxins, 2020, 12, 791.	3.4	18
12	Genome-wide microRNA screening in Nile tilapia reveals pervasive isomiRs' transcription, sex-biased arm switching and increasing complexity of expression throughout development. Scientific Reports, 2018, 8, 8248.	3.3	25
13	Fishing Into the MicroRNA Transcriptome. Frontiers in Genetics, 2018, 9, 88.	2.3	54
14	Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses. Frontiers in Genetics, 2017, 8, 59.	2.3	78
15	A multiplex PCR approach for the molecular identification and conservation of the Critically Endangered daggernose shark. Endangered Species Research, 2017, 32, 169-175.	2.4	8
16	MicroRNA-499 Expression Distinctively Correlates to Target Genes sox6 and rod1 Profiles to Resolve the Skeletal Muscle Phenotype in Nile Tilapia. PLoS ONE, 2015, 10, e0119804.	2.5	36
17	Evolution and genomic organization of muscle microRNAs in fish genomes. BMC Evolutionary Biology, 2014, 14, 196.	3.2	22

A Streamlined DNA Tool for Global Identification of Heavily Exploited Coastal Shark Species (Genus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5