
Sigurbjörg Torsteinsdóttir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925642/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Componentâ€resolved microarray analysis of IgE sensitization profiles to <i>Culicoides</i> recombinant allergens in horses with insect bite hypersensitivity. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1147-1157.	5.7	20
2	Isolation of equid alphaherpesvirus 3 from a horse in Iceland with equine coital exanthema. Acta Veterinaria Scandinavica, 2021, 63, 6.	1.6	3
3	Comparison of recombinant Culicoides allergens produced in different expression systems for IgE serology of insect bite hypersensitivity in horses of different origins. Veterinary Immunology and Immunopathology, 2021, 238, 110289.	1.2	4
4	First clinical expression of equine insect bite hypersensitivity is associated with co-sensitization to multiple Culicoides allergens. PLoS ONE, 2021, 16, e0257819.	2.5	5
5	Immunopathogenesis and immunotherapy of Culicoides hypersensitivity in horses: an update. Veterinary Dermatology, 2021, 32, 579.	1.2	1
6	Cul o 2 specific IgG3/5 antibodies predicted Culicoides hypersensitivity in a group imported Icelandic horses. BMC Veterinary Research, 2020, 16, 283.	1.9	8
7	The effect of maternal immunity on the equine gammaherpesvirus type 2 and 5 viral load and antibody response. PLoS ONE, 2019, 14, e0218576.	2.5	4
8	New Strategies for Prevention and Treatment of Insect Bite Hypersensitivity in Horses. Current Dermatology Reports, 2019, 8, 303-312.	2.1	15
9	Longitudinal analysis of allergenâ€specific IgE and IgG subclasses as potential predictors of insect bite hypersensitivity following first exposure to <i>Culicoides</i> in Icelandic horses. Veterinary Dermatology, 2018, 29, 51.	1.2	18
10	A prospective study on insect bite hypersensitivity in horses exported from Iceland into Switzerland. Acta Veterinaria Scandinavica, 2018, 60, 69.	1.6	16
11	Barley produced Culicoides allergens are suitable for monitoring the immune response of horses immunized with E. coli expressed allergens. Veterinary Immunology and Immunopathology, 2018, 201, 32-37.	1.2	14
12	Oral administration of transgenic barley expressing a <i>Culicoides</i> allergen induces specific antibody response. Equine Veterinary Journal, 2017, 49, 512-518.	1.7	9
13	Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age. PLoS ONE, 2017, 12, e0169072.	2.5	18
14	A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A. Veterinary Immunology and Immunopathology, 2016, 172, 14-20.	1.2	28
15	Establishment and characterization of fetal equine kidney and lung cells with extended lifespan. Susceptibility to equine gammaherpesvirus infection and transfection efficiency. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 872-877.	1.5	3
16	Developing a preventive immunization approach against insect bite hypersensitivity using recombinant allergens: A pilot study. Veterinary Immunology and Immunopathology, 2015, 166, 8-21.	1.2	29
17	Antibody and cellular immune responses of naÃ ⁻ ve mares to repeated vaccination with an inactivated equine herpesvirus vaccine. Vaccine, 2015, 33, 5588-5597.	3.8	27
18	Genetic diversity of equine gammaherpesviruses (γ-EHV) and isolation of a syncytium forming EHV-2 strain from a horse in Iceland. Research in Veterinary Science, 2013, 94, 170-177.	1.9	19

#	Article	IF	CITATIONS
19	Generation of equine TSLP-specific antibodies and their use for detection of TSLP produced by equine keratinocytes and leukocytes. Veterinary Immunology and Immunopathology, 2012, 147, 180-186.	1.2	8
20	Selective cloning, characterization, and production of the Culicoides nubeculosus salivary gland allergen repertoire associated with equine insect bite hypersensitivity. Veterinary Immunology and Immunopathology, 2011, 139, 200-209.	1.2	55
21	Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: A possible role for regulatory T cells. Veterinary Immunology and Immunopathology, 2011, 140, 63-74.	1.2	45
22	Isolation and Partial Sequencing of <i>Equid Herpesvirus 5</i> from a Horse in Iceland. Journal of Veterinary Diagnostic Investigation, 2010, 22, 420-423.	1.1	13
23	Increased IL-4 and decreased regulatory cytokine production following relocation of Icelandic horses from a high to low endoparasite environment. Veterinary Immunology and Immunopathology, 2010, 133, 40-50.	1.2	26
24	lmmune response against equine gammaherpesvirus in Icelandic horses. Veterinary Microbiology, 2009, 137, 363-368.	1.9	20
25	Study of equid herpesviruses 2 and 5 in Iceland with a type-specific polymerase chain reaction. Research in Veterinary Science, 2008, 85, 605-611.	1.9	57
26	Mutational analysis of a principal neutralization domain of visna/maedi virus envelope glycoprotein. Journal of General Virology, 2008, 89, 716-721.	2.9	9
27	Vaccination of sheep with Maedi-visna virus gag gene and protein, beneficial or harmful?. Vaccine, 2007, 25, 6713-6720.	3.8	20
28	Immune response to maedi-visna virus. Frontiers in Bioscience - Landmark, 2007, 12, 1532.	3.0	15
29	Production of monoclonal antibodies specific for native equine IgE and their application to monitor total serum IgE responses in Icelandic and non-Icelandic horses with insect bite dermal hypersensitivity. Veterinary Immunology and Immunopathology, 2006, 112, 156-170.	1.2	57
30	Simultaneous Mutations in CA and Vif of Maedi-Visna Virus Cause Attenuated Replication in Macrophages and Reduced Infectivity In Vivo. Journal of Virology, 2005, 79, 15038-15042.	3.4	13
31	The vif gene of maedi-visna virus is essential for infectivity in vivo and in vitro. Virology, 2004, 318, 350-359.	2.4	24
32	Biological and genetic differences between lung- and brain-derived isolates of maedi-visna virus. Virus Genes, 1998, 16, 281-293.	1.6	29
33	Immune response to recombinant visna virus Gag and Env precursor proteins synthesized in insect cells. Virus Research, 1998, 53, 107-120.	2.2	11
34	In Vivoandin VitroInfection with Two Different Molecular Clones of Visna Virus. Virology, 1997, 229, 370-380.	2.4	25
35	Antigen processing and presentation by EBV-carrying cell lines: Cell-phenotype dependence and influence of the EBV-encoded LMP1. International Journal of Cancer, 1993, 53, 856-862.	5.1	32
36	Overâ€expression of câ€ <i>myc</i> increases the sensitivity of epsteinâ€barr virus immortalized lymphoblastoid cells to nonâ€MHCâ€restricted cytotoxicity. International Journal of Cancer, 1993, 53, 1008-1012.	5.1	4

#	Article	IF	CITATIONS
37	Pathogenesis of central nervous system lesions in visna: Cell-mediated immunity and lymphocyte subsets in blood, brain and cerebrospinal fluid. Journal of Neuroimmunology, 1992, 41, 149-158.	2.3	39
38	Stimulation with allogeneic epstein-barr virus-transformed lymphoblastoid cell lines generates HLA class I-specific CTLs with different target cell avidity. Cellular Immunology, 1991, 137, 501-513.	3.0	4
39	Human and ovine lentiviral infections compared. Comparative Immunology, Microbiology and Infectious Diseases, 1991, 14, 277-287.	1.6	19
40	Search for the critical characteristics of phenotypically different B cell lines, Burkitt lymphoma cells and lymphoblastoid cell lines, which determine differences in their functional interaction with allogeneic lymphocytes. Cancer Immunology, Immunotherapy, 1991, 34, 128-132.	4.2	14
41	Allele-specific down-regulation of MHC class I antigens in Burkitt lymphoma lines. Cellular Immunology, 1989, 120, 396-400.	3.0	30
42	Reversion of tumorigenicity and decreased agarose clonability after EBV conversion of an igh/myc translocation-carrying be line. International Journal of Cancer, 1989, 43, 273-278.	5.1	30
43	Differential expression of hla antigen of HLA anigens on human Bâ€cell lines of normal and malignant origin: A consequence of immune surveillance or a phenotypic vestige of the progenitor cells?. International Journal of Cancer, 1988, 41, 913-919.	5.1	34
44	Combined treatment with interferon (IFN)-Î ³ and tumor necrosis factor (TNF)-α up-regulates the expression of HLA class I determinants in Burkitt lymphoma lines. Cellular Immunology, 1988, 117, 303-311.	3.0	15
45	Activation of B lymphocytes by Epstein-Barr virus/CR2 receptor interaction. European Journal of Immunology, 1987, 17, 815-820.	2.9	34
46	Differential recognition of tumor-derived and in vitro Epstein-Barr virus-transformed B-cell lines by fetal calf serum-specific T4-positive cytotoxic T-lymphocyte clones. Cellular Immunology, 1986, 98, 453-466.	3.0	16
47	Selective inhibitory effect of Hu-IFN-γ on the agarose clonability of tumor-derived lymphoid cell lines. Cellular Immunology, 1985, 90, 65-73.	3.0	4