Johanna Schleifenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925479/publications.pdf

Version: 2024-02-01

759233 888059 17 845 12 17 citations h-index g-index papers 18 18 18 1102 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Myogenic Vasoconstriction Requires Canonical G $<$ sub $>$ q $/11sub>Signaling of the Angiotensin II Type 1 Receptor. Journal of the American Heart Association, 2022, 11, e022070.$	3.7	12
2	Role of TRPC6 in kidney damage after acute ischemic kidney injury. Scientific Reports, 2022, 12, 3038.	3.3	7
3	Endothelial damage and dysfunction in acute graft-versus-host disease. Haematologica, 2021, 106, 2147-2160.	3.5	26
4	Age Impairs Soluble Guanylyl Cyclase Function in Mouse Mesenteric Arteries. International Journal of Molecular Sciences, 2021, 22, 11412.	4.1	7
5	Genetically Encoded Calcium Indicators: A New Tool in Renal Hypertension Research. Frontiers in Medicine, 2019, 6, 128.	2.6	28
6	Alamandine and Its Receptor MrgD Pair Up to Join the Protective Arm of the Renin-Angiotensin System. Frontiers in Medicine, 2019, 6, 107.	2.6	42
7	Role of Ryanodine Type 2 Receptors in Elementary Ca ²⁺ Signaling in Arteries and Vascular Adaptive Responses. Journal of the American Heart Association, 2019, 8, e010090.	3.7	29
8	Do K $<$ sub $>$ V $<$ /sub $>$ 7.1 channels contribute to control of arterial vascular tone?. British Journal of Pharmacology, 2017, 174, 150-162.	5.4	24
9	Perivascular Adipose Tissue, Potassium Channels, and Vascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1827-1830.	2.4	57
10	Stretchâ€"Activation of Angiotensin II Type 1 _a Receptors Contributes to the Myogenic Response of Mouse Mesenteric and Renal Arteries. Circulation Research, 2014, 115, 263-272.	4.5	108
11	Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. Journal of Clinical Investigation, 2014, 124, 675-686.	8.2	126
12	Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models. Development (Cambridge), 2013, 140, 1720-1729.	2.5	60
13	Role of KCNQ Channels in Skeletal Muscle Arteries and Periadventitial Vascular Dysfunction. Hypertension, 2013, 61, 151-159.	2.7	75
14	Differential Effects of Cystathionine-γ-lyase–Dependent Vasodilatory H2S in Periadventitial Vasoregulation of Rat and Mouse Aortas. PLoS ONE, 2012, 7, e41951.	2.5	78
15	Spinophilin regulates central angiotensin II-mediated effect on blood pressure. Journal of Molecular Medicine, 2011, 89, 1219-1229.	3.9	9
16	Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. Journal of Hypertension, 2010, 28, 1875-1882.	0.5	154
17	Carbon monoxide targets the poreâ€forming BK alpha subunit in vascular smooth muscle Ca2+â€activated largeâ€conductance K+ channels. FASEB Journal, 2008, 22, 1206.5.	0.5	2