
Paula Casati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925158/publications.pdf Version: 2024-02-01

ΡΑΙΙΙΑ CASATI

#	Article	IF	CITATIONS
1	Ultraviolet-B Radiation Represses Primary Root Elongation by Inhibiting Cell Proliferation in the Meristematic Zone of Arabidopsis Seedlings. Frontiers in Plant Science, 2022, 13, 829336.	3.6	8
2	Arabidopsis mediator subunit 17 connects transcription with <scp>DNA</scp> repair after <scp>UVâ€B</scp> exposure. Plant Journal, 2022, 110, 1047-1067.	5.7	9
3	Chromatin dynamics during DNA damage and repair in plants: new roles for old players. Journal of Experimental Botany, 2021, 72, 4119-4131.	4.8	11
4	Recent advances on the roles of flavonoids as plant protective molecules after <scp>UV</scp> and high light exposure. Physiologia Plantarum, 2021, 173, 736-749.	5.2	97
5	E2Fb and E2Fa transcription factors independently regulate the DNA damage response after UVâ $\in\!\!B$ exposure in Arabidopsis. Plant Journal, 2021, , .	5.7	7
6	CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants. Molecular Plant, 2020, 13, 72-87.	8.3	24
7	Ribosomal Protein RPL10A Contributes to Early Plant Development and Abscisic Acid-Dependent Responses in Arabidopsis. Frontiers in Plant Science, 2020, 11, 582353.	3.6	9
8	AtCAFâ€1 mutants show different DNA damage responses after ultravioletâ€B than those activated by other genotoxic agents in leaves. Plant, Cell and Environment, 2019, 42, 2730-2745.	5.7	10
9	Apigenin produced by maize flavone synthase <scp>I</scp> and <scp>II</scp> protects plants against <scp>UVâ€B</scp> â€induced damage. Plant, Cell and Environment, 2019, 42, 495-508.	5.7	54
10	Arabidopsis E2Fc is required for the <scp>DNA</scp> damage response under <scp>UV</scp> â€B radiation epistatically over the micro <scp>RNA</scp> 396 and independently of E2Fe. Plant Journal, 2019, 97, 749-764.	5.7	18
11	UVâ€B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2018, 41, 1394-1406.	5.7	42
12	Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. Plant Journal, 2018, 96, 1178-1190.	5.7	33
13	A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection. Journal of Experimental Botany, 2018, 69, 4921-4933.	4.8	25
14	UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels. Plant Physiology, 2017, 174, 1110-1126.	4.8	79
15	Developmental reprogramming by UV-B radiation in plants. Plant Science, 2017, 264, 96-101.	3.6	62
16	HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1179.	3.6	24
17	P1 Epigenetic Regulation in Leaves of High Altitude Maize Landraces: Effect of UV-B Radiation. Frontiers in Plant Science, 2016, 7, 523.	3.6	17
18	ldentification and Characterization of Maize <i>salmon silks</i> Genes Involved in Insecticidal Maysin Biosynthesis. Plant Cell, 2016, 28, 1297-1309.	6.6	64

PAULA CASATI

#	Article	IF	CITATIONS
19	ZmMBD101 is a DNAâ€binding protein that maintains <i>Mutator</i> elements chromatin in a repressive state in maize. Plant, Cell and Environment, 2016, 39, 174-184.	5.7	9
20	AtPDCD5 plays a role during dark-senescence in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1176820.	2.4	2
21	AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis. Plant Physiology, 2016, 170, 2444-2460.	4.8	24
22	HAG3, a Histone Acetyltransferase, Affects UV-B Responses by Negatively Regulating the Expression of DNA Repair Enzymes and Sunscreen Content in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2015, 56, 1388-1400.	3.1	26
23	The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. Plant Physiology, 2015, 169, 1090-1107.	4.8	87
24	Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in <i>Arabidopsis</i> Leaves. Plant Cell, 2013, 25, 3570-3583.	6.6	124
25	Flavonols Protect Arabidopsis Plants against UV-B Deleterious Effects. Molecular Plant, 2013, 6, 1376-1379.	8.3	74
26	ANTI-SILENCING FUNCTION1 Proteins Are Involved in Ultraviolet-Induced DNA Damage Repair and Are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis Â. Plant Physiology, 2013, 162, 1164-1177.	4.8	47
27	New Evidence for Differential Roles of L10 Ribosomal Proteins from Arabidopsis. Plant Physiology, 2013, 163, 378-391.	4.8	43
28	UV-B Radiation Induces Mu Element Somatic Transposition in Maize. Molecular Plant, 2013, 6, 2004-2007.	8.3	10
29	Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signaling and Behavior, 2013, 8, e26758.	2.4	39
30	Identification of a Bifunctional Maize C- and O-Glucosyltransferase. Journal of Biological Chemistry, 2013, 288, 31678-31688.	3.4	122
31	DDM1 and ROS1 have a role in UV-B induced- and oxidative DNA damage in A. thaliana. Frontiers in Plant Science, 2013, 4, 420.	3.6	39
32	Evolution and Expression of Tandem Duplicated Maize Flavonol Synthase Genes. Frontiers in Plant Science, 2012, 3, 101.	3.6	36
33	Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 2012, 3, 222.	3.6	1,161
34	Participation of Chromatin-Remodeling Proteins in the Repair of Ultraviolet-B-Damaged DNA Â Â Â. Plant Physiology, 2012, 158, 981-995.	4.8	62
35	A Genome-Wide Regulatory Framework Identifies Maize <i>Pericarp Color1</i> Controlled Genes. Plant Cell, 2012, 24, 2745-2764.	6.6	148
36	Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. Journal of Experimental Botany, 2011, 62, 2925-2937.	4.8	64

PAULA CASATI

#	Article	IF	CITATIONS
37	Plant L10 Ribosomal Proteins Have Different Roles during Development and Translation under Ultraviolet-B Stress Â. Plant Physiology, 2010, 153, 1878-1894.	4.8	140
38	Cloning and characterization of a UV-B-inducible maize flavonol synthase. Plant Journal, 2010, 62, 77-91.	5.7	126
39	Mutator transposon activation after UV-B involves chromatin remodeling. Epigenetics, 2010, 5, 352-363.	2.7	31
40	Arabidopsis L10 ribosomal proteins in UV-B responses. Plant Signaling and Behavior, 2010, 5, 1222-1225.	2.4	16
41	Histone Acetylation and Chromatin Remodeling Are Required for UV-B–Dependent Transcriptional Activation of Regulated Genes in Maize. Plant Cell, 2008, 20, 827-842.	6.6	80
42	Differential accumulation of maysin and rhamnosylisoorientin in leaves of high-altitude landraces of maize after UV-B exposure. Plant, Cell and Environment, 2005, 28, 788-799.	5.7	97
43	Analysis of Leaf Proteome after UV-B Irradiation in Maize Lines Differing in Sensitivity. Molecular and Cellular Proteomics, 2005, 4, 1673-1685.	3.8	68
44	Crosslinking of Ribosomal Proteins to RNA in Maize Ribosomes by UV-B and Its Effects on Translation. Plant Physiology, 2004, 136, 3319-3332.	4.8	73
45	Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content. Plant Physiology, 2003, 132, 1739-1754.	4.8	228