Chun-Wei Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3925092/chun-wei-huang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66
papers

2,101
citations

h-index

44
g-index

67
ext. papers

2,399
ext. citations

9.3
avg, IF

L-index

#	Paper	IF	Citations
66	High Mobility MoS Transistor with Low Schottky Barrier Contact by Using Atomic Thick h-BN as a Tunneling Layer. <i>Advanced Materials</i> , 2016 , 28, 8302-8308	24	282
65	Dynamic evolution of conducting nanofilament in resistive switching memories. <i>Nano Letters</i> , 2013 , 13, 3671-7	11.5	266
64	Flexible ferroelectric element based on van der Waals heteroepitaxy. <i>Science Advances</i> , 2017 , 3, e1700°	1 21 4.3	130
63	Switching Kinetic of VCM-Based Memristor: Evolution and Positioning of Nanofilament. <i>Advanced Materials</i> , 2015 , 27, 5028-33	24	129
62	Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. <i>Nanoscale</i> , 2012 , 4, 1471-5	7.7	96
61	Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Applied Materials & amp; Interfaces, 2016, 8, 3240	01 5.3 24	062
60	Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors. <i>ACS Applied Materials & Design of Endows (1988)</i> 100 (1998) 10	9.5	61
59	Direct Observation of Dual-Filament Switching Behaviors in Ta O -Based Memristors. <i>Small</i> , 2017 , 13, 1603116	11	56
58	Phase transformation and thermoelectric properties of bismuth-telluride nanowires. <i>Nanoscale</i> , 2013 , 5, 4669-72	7.7	54
57	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for High-Performance 2D Field Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 2062-9	24	48
56	Growth of CulnSe2 and In2Se3/CulnSe2 nano-heterostructures through solid state reactions. <i>Nano Letters</i> , 2011 , 11, 4348-51	11.5	43
55	Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications. <i>Nano Energy</i> , 2014 , 8, 291-296	17.1	41
54	Observation of Resistive Switching Behavior in Crossbar Core-Shell Ni/NiO Nanowires Memristor. <i>Small</i> , 2018 , 14, 1703153	11	40
53	Revealing controllable nanowire transformation through cationic exchange for RRAM application. <i>Nano Letters</i> , 2014 , 14, 2759-63	11.5	39
52	In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. <i>Analytical Chemistry</i> , 2013 , 85, 3955-60	7.8	38
51	Kinetic competition model and size-dependent phase selection in 1-D nanostructures. <i>Nano Letters</i> , 2012 , 12, 3115-20	11.5	37
50	Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory. <i>ACS Nano</i> , 2014 , 8, 9457-62	16.7	35

(2011-2013)

49	Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties. <i>Nanoscale</i> , 2013 , 5, 5086-92	7.7	31
48	In-situ TEM observation of Multilevel Storage Behavior in low power FeRAM device. <i>Nano Energy</i> , 2017 , 34, 103-110	17.1	29
47	High-yield synthesis of ZnO nanowire arrays and their opto-electrical properties. <i>Nanoscale</i> , 2012 , 4, 1476-80	7.7	27
46	Observing Growth of Nanostructured ZnO in Liquid. <i>Chemistry of Materials</i> , 2016 , 28, 4507-4511	9.6	25
45	Probing the electrochemical properties of an electrophoretically deposited Co3O4/rGO/CNTs nanocomposite for supercapacitor applications. <i>RSC Advances</i> , 2016 , 6, 60578-60586	3.7	25
44	Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. <i>Nanoscale</i> , 2012 , 4, 4702-6	7.7	25
43	Optoelectronic Properties of Single-Crystalline Zn2GeO4 Nanowires. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8194-8199	3.8	24
42	Opto-electrical properties of Sb-doped p-type ZnO nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 11190	93.4	24
41	Phosphorus-Doped pl Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties. <i>Chemistry of Materials</i> , 2015 , 27, 4216-4221	9.6	23
40	The influence of surface oxide on the growth of metal/semiconductor nanowires. <i>Nano Letters</i> , 2011 , 11, 2753-8	11.5	23
39	Single-crystalline ENi2Si nanowires with excellent physical properties. <i>Nanoscale Research Letters</i> , 2013 , 8, 290	5	20
38	Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor. <i>Nano Energy</i> , 2020 , 72, 104683	17.1	19
37	Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. <i>ACS Applied Materials & District Materi</i>	9.5	19
36	The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors. <i>Applied Physics Letters</i> , 2015 , 106, 051607	3.4	19
35	Atomic-Scale Fabrication of In-Plane Heterojunctions of Few-Layer MoS via In Situ Scanning Transmission Electron Microscopy. <i>Small</i> , 2020 , 16, e1905516	11	18
34	Atomic Visualization of the Phase Transition in Highly Strained BiFeO3 Thin Films with Excellent Pyroelectric Response. <i>Nano Energy</i> , 2015 , 17, 72-81	17.1	17
33	Observing the evolution of graphene layers at high current density. <i>Nano Research</i> , 2016 , 9, 3663-3670	10	16
32	Growth of single-crystalline cobalt silicide nanowires with excellent physical properties. <i>Journal of Applied Physics</i> , 2011 , 110, 074302	2.5	16

31	Single-crystalline CuO nanowires for resistive random access memory applications. <i>Applied Physics Letters</i> , 2015 , 106, 173103	3.4	15
30	Flexible Heteroepitaxy Photoelectrode for Photo-electrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3900-3907	6.1	15
29	Dynamic observation of reversible lithium storage phenomena in hybrid supercapacitor devices. <i>Nano Energy</i> , 2017 , 41, 494-500	17.1	14
28	Self-formed conductive nanofilaments in (Bi, Mn)O for ultralow-power memory devices. <i>Nano Energy</i> , 2015 , 13, 283-290	17.1	14
27	Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications. <i>Nano Letters</i> , 2016 , 16, 1086-91	11.5	14
26	Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y2O3 Interlayer. <i>IEEE Electron Device Letters</i> , 2015 , 36, 128	34 [.] 128	6 ¹³
25	Atomic-scale investigation of Lithiation/Delithiation mechanism in High-entropy spinel oxide with superior electrochemical performance. <i>Chemical Engineering Journal</i> , 2021 , 420, 129838	14.7	13
24	In Situ Investigation of Defect-Free Copper Nanowire Growth. <i>Nano Letters</i> , 2018 , 18, 778-784	11.5	11
23	Mass transport phenomena in copper nanowires at high current density. <i>Nano Research</i> , 2016 , 9, 1071-	1078	10
22	Single-crystalline Ge nanowires and Cu3Ge/Ge nano-heterostructures. <i>CrystEngComm</i> , 2012 , 14, 4570	3.3	10
21	Direct Observation of Sublimation Behaviors in One-Dimensional In2Se3/In2O3 Nanoheterostructures. <i>Analytical Chemistry</i> , 2015 , 87, 5584-8	7.8	9
20	Optimization of the nanotwin-induced zigzag surface of copper by electromigration. <i>Nanoscale</i> , 2016 , 8, 2584-8	7.7	9
19	Observing phase transformation in CVD-grown MoSvia atomic resolution TEM. <i>Chemical Communications</i> , 2018 , 54, 9941-9944	5.8	9
18	Carbon Nanotube/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites and Their Application in Supercapacitors. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5366-5373	1.3	9
17	Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures. <i>Nanoscale</i> , 2015 , 7, 1776-81	7.7	8
16	Atomic-Scale Localized Thinning and Reconstruction of Two-Dimensional WS2 Layers through In Situ Transmission Electron Microscopy/Scanning Transmission Electron Microscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14935-14940	3.8	8
15	Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures. <i>CrystEngComm</i> , 2012 , 14, 53-58	3.3	8
14	Observing Solid-State Formation of Oriented Porous Functional Oxide Nanowire Heterostructures by in Situ TEM. <i>Nano Letters</i> , 2018 , 18, 6064-6070	11.5	7

LIST OF PUBLICATIONS

13	Electron Beam Irradiation-Induced Deoxidation and Atomic Flattening on the Copper Surface. <i>ACS Applied Materials & Description</i> , 11, 40909-40915	9.5	6	
12	Real time observation of the formation of hollow nanostructures through solid state reactions. <i>Analytical Chemistry</i> , 2014 , 86, 4348-53	7.8	6	
11	In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO-Based Energy Storage Devices. <i>Analytical Chemistry</i> , 2017 , 89, 9671-9675	7.8	6	
10	In situ TEM investigation of electron beam-induced ultrafast chemical lithiation for charging. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 648-655	13	6	
9	Dynamic observation on the functional metal oxide conversion behaviors in Fe3O4/ZnO heterostructures. <i>Scripta Materialia</i> , 2020 , 177, 192-197	5.6	5	
8	Solid-State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale. <i>Small</i> , 2018 , 14, 1702877	11	4	
7	Shape control of nickel silicide nanocrystals on stress-modified surface. <i>CrystEngComm</i> , 2014 , 16, 1611	3.3	4	
6	Synthesis and thermoelectric properties of indium telluride nanowires. <i>Materials Research Bulletin</i> , 2019 , 112, 61-65	5.1	4	
5	Electron-beam-induced phase transition in the transmission electron microscope: the case of VO2(B). <i>CrystEngComm</i> , 2018 , 20, 6857-6860	3.3	4	
4	Unique amorphization-mediated growth to form heterostructured silicide nanowires by solid-state reactions. <i>Materials and Design</i> , 2019 , 169, 107674	8.1	2	
3	Synthesis of single-crystalline Ge1Sb2Te4 nanoplates in solution phase. <i>CrystEngComm</i> , 2016 , 18, 2244-	·2 3 .46	1	
2	The Linearly Temperature-Dependent Thermal Conductivity Across the Transition Temperature of Polycrystalline YBa2Cu3O6.9. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 2289-2293	1.5	О	
1	Observing Resistive Switching Behaviors in Single Ta2O5 Nanotube-Based Memristive Devices. Materials Today Nano, 2022 , 100212	9.7		