Rui Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/392456/rui-liu-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 5,119 40 205 h-index g-index citations papers 6,586 6.6 6.1 225 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
205	The underlying mechanism of A-type procyanidins from peanut skin on DSS-induced ulcerative colitis mice by regulating gut microbiota and metabolism <i>Journal of Food Biochemistry</i> , 2022 , e14103	3.3	1
204	Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal-Organic Frameworks (MOFs) for Biosensing <i>Analytical Chemistry</i> , 2022 ,	7.8	9
203	Peanut skin extract ameliorates high-fat diet-induced atherosclerosis by regulating lipid metabolism, inflammation reaction and gut microbiota in ApoE mice <i>Food Research International</i> , 2022 , 154, 111014	7	3
202	Laser Surface Melting and Consecutive Point-Mode Forging Hardening of DH36 Marine Steel: Mechanical and Precipitation Behavior. <i>Coatings</i> , 2022 , 12, 495	2.9	1
201	NAD-dependent Glsirt1 has a key role on secondary metabolism in Ganoderma lucidum <i>Microbiological Research</i> , 2022 , 258, 126992	5.3	
200	Effects of A-type oligomer procyanidins on protein glycation using two glycation models coupled with spectroscopy, chromatography, and molecular docking <i>Food Research International</i> , 2022 , 155, 111068	7	0
199	Transcriptome Analysis Reveals Genes Respond to Chlorophyll Deficiency in Green and Yellow Leaves of Chrysanthemum morifolium Ramat. <i>Horticulturae</i> , 2022 , 8, 14	2.5	O
198	Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen <i>Food Chemistry</i> , 2022 , 389, 133071	8.5	0
197	Evaluating the Nutritional Properties of Food: A Scoping Review. <i>Nutrients</i> , 2022 , 14, 2352	6.7	
196	Bioactive cytochalasans from the fungus Arthrinium arundinis DJ-13. <i>Phytochemistry</i> , 2021 , 194, 11300	94	2
195	Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. <i>Translational Oncology</i> , 2021 , 15, 101294	4.9	5
194	Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen <i>Food Chemistry</i> , 2021 , 375, 131908	8.5	2
193	Procyanidin A and its digestive products prevent acrylamide-induced intestinal barrier dysfunction the MAPK-mediated MLCK pathway. <i>Food and Function</i> , 2021 , 12, 11956-11965	6.1	1
192	Potential Oscillated Electrochemical Metal Recovery System with Improved Conversion Kinetics and High Levelized Quality. <i>Environmental Science & Environmental Science & Envi</i>	10.3	2
191	Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. <i>Environmental Science & Environmental Science & E</i>	10.3	6
190	HCl-Tolerant HPO/RuO-CeO Catalysts for Extremely Efficient Catalytic Elimination of Chlorinated VOCs. <i>Environmental Science & Environmental Science &</i>	10.3	39
189	The Binding Strength of Reactive H*: A Neglected Key Factor in Rh-Catalyzed Environmental Hydrodefluorination Reaction. <i>ACS ES&T Engineering</i> , 2021 , 1, 1036-1045		1

(2021-2021)

Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	12
Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. <i>Phytomedicine</i> , 2021 , 85, 153514	6.5	1
In Situ Growth Large Area Silver Nanostructure on Metal Phenolic Network Coated NAAO Film and Its SERS Sensing Application for Monofluoroacetic Acid. <i>ACS Sensors</i> , 2021 , 6, 2129-2135	9.2	1
Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. <i>International Journal of Biological Macromolecules</i> , 2021 , 181, 211-220	7.9	5
Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. <i>Molecules</i> , 2021 , 26,	4.8	1
Bioactive sesterterpenoids from the fungus Penicillium roqueforti YJ-14. <i>Phytochemistry</i> , 2021 , 187, 112762	4	6
Structural characterization, Emmylase and Eglucosidase inhibitory activities of polysaccharides from wheat bran. <i>Food Chemistry</i> , 2021 , 341, 128218	8.5	22
Protective effect of procyanidin A-type dimers against HO-induced oxidative stress in prostate DU145 cells through the MAPKs signaling pathway. <i>Life Sciences</i> , 2021 , 266, 118908	6.8	2
Novel computer-assisted separation prediction strategy for online-enrichment-HPLC-FLD in simultaneous monitoring of bisphenols in children® water bottles. <i>Food Chemistry</i> , 2021 , 339, 127766	8.5	3
Single nanoparticle analysis for homogeneous immunoassay of CA19-9 for serological evaluation. Journal of Analytical Atomic Spectrometry, 2021 , 36, 279-284	3.7	2
Synthesis and Characterization of SrFeO2.73/Bi2MoO6 Heterojunction with Enhanced Photocatalytic Activity. <i>Catalysis Letters</i> , 2021 , 151, 2176	2.8	1
Photoresponsive Bridged Polysilsesquioxanes for Protein Immobilization/Controlled Release and Micropatterns. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 36370-36379	9.5	O
Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. <i>Foods</i> , 2021 , 10,	4.9	2
Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial and Seed Development in Maize. <i>Frontiers in Plant Science</i> , 2021 , 12, 695249	6.2	1
Integration of [12]aneN3 and Acenaphtho[1,2-b]quinoxaline as non-viral gene vectors with two-photon property for enhanced DNA/siRNA delivery and bioimaging. <i>Bioorganic Chemistry</i> , 2021 , 113, 104983	5.1	1
Multiplex Nucleic Acid Assay of SARS-CoV-2 via a Lanthanide Nanoparticle-Tagging Strategy. <i>Analytical Chemistry</i> , 2021 , 93, 12714-12722	7.8	3
Metabolomic profiles of A-type procyanidin dimer and trimer with gut microbiota in vitro. <i>Journal of Functional Foods</i> , 2021 , 85, 104637	5.1	4
Lanthanide Nanoprobes for the Multiplex Evaluation of Breast Cancer Biomarkers. <i>Analytical Chemistry</i> , 2021 , 93, 13719-13726	7.8	4
	carcinoma growth upon glucose deprivation. <i>Journal of Clinical Investigation</i> , 2021, 131, Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. <i>Phytomedicine</i> , 2021, 85, 153514 In Situ Growth Large Area Silver Nanostructure on Metal Phenolic Network Coated NAAO Film and Its SERS Sensing Application for Monofluoroacetic Acid. <i>ACS Sensors</i> , 2021, 6, 2129-2135 Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. <i>International Journal of Biological Macromolecules</i> , 2021, 181, 211-220 Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. <i>Molecules</i> , 2021, 26, Bioactive sesterterpenoids from the fungus Penicillium roqueforti YJ-14. <i>Phytochemistry</i> , 2021, 187, 112762 Structural characterization, Bmylase and Eglucosidase inhibitory activities of polysaccharides from wheat bran. <i>Food Chemistry</i> , 2021, 341, 128218 Protective effect of procyanidin A-type dimers against HO-induced oxidative stress in prostate DU145 cells through the MAPKs signaling pathway. <i>Life Sciences</i> , 2021, 266, 118908 Novel computer-assisted separation prediction strategy for online-enrichment-HPLC-FLD in simultaneous monitoring of bisphenols in children® water bottles. <i>Food Chemistry</i> , 2021, 339, 127766 Single nanoparticle analysis for homogeneous immunoassay of CA19-9 for serological evaluation. <i>Journal of Analytical Atomic Spectrometry</i> , 2021, 36, 279-284 Synthesis and Characterization of SrFeO2.73/Bi2MoO6 Heterojunction with Enhanced Photocatalytic Activity. <i>Catalysis Letters</i> , 2021, 151, 2176 Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. <i>Foods</i> , 2021, 10, Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial and Seed Development in Maize. <i>Frontiers in Plant Scie</i>	carcinoma growth upon glucose deprivation. Journal of Clinical Investigation, 2021, 131, Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. Phytomedicine, 2021, 85, 153514 In Situ Growth Large Area Silver Nanostructure on Metal Phenolic Network Coated NAAO Film and lts SERS Sensing Application for Monofluoroacetic Acid. ACS Sensors, 2021, 6, 2129-2135 Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. International Journal of Biological Macromolecules, 2021, 181, 211-220 Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. Molecules, 2021, 26, Bioactive sesterterpenoids from the fungus Penicillium roqueforti YJ-14. Phytochemistry, 2021, 187, 112762 Structural characterization, Bamylase and Eglucosidase inhibitory activities of polysaccharides from wheat bran. Food Chemistry, 2021, 341, 128218 Protective effect of procyanidin A-type dimers against HO induced oxidative stress in prostate DU145 cells through the MAPKs signaling pathway. Life Sciences, 2021, 266, 118908 Novel computer-assisted separation prediction strategy for online-enrichment-HPLC-FLD in simultaneous monitoring of bisphenois in children® water bottles. Food Chemistry, 2021, 339, 127766 Single nanoparticle analysis for homogeneous immunoassay of CA19-9 for serological evaluation. Journal of Analytical Atomic Spectrometry, 2021, 36, 279-284 Synthesis and Characterization of SrFeO2.73/Bi2MO06 Heterojunction with Enhanced Photocatalytic Activity. Catalysis Letters, 2021, 151, 2176 Photoresponsive Bridged Polysilsesquioxanes for Protein Immobilization/Controlled Release and Micropatterns. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36370-36379 Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. Foods, 2021, 10, 104983 Multipl

170	Comprehensive analysis of the anti-glycation effect of peanut skin extract. <i>Food Chemistry</i> , 2021 , 362, 130169	8.5	7
169	Brassinosteroid homeostasis is critical for the functionality of the Medicago truncatula pulvinus. <i>Plant Physiology</i> , 2021 , 185, 1745-1763	6.6	2
168	Anionic oxoborane and thioxoborane molecules supported by a 1,2-bis(imino)acenaphthene ligand. <i>Dalton Transactions</i> , 2021 , 50, 6797-6801	4.3	2
167	Novel Strategy for Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its Applications in Cataluminescence Sensing. <i>ACS Applied Materials & Description Applications</i> (13) 3471-3480	9.5	20
166	Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber. <i>Food and Function</i> , 2021 , 12, 9880-98	6 3¹	O
165	Multimodal Imaging Iridium(III) Complex for Hypochlorous Acid in Living Systems. <i>Analytical Chemistry</i> , 2020 , 92, 8285-8291	7.8	17
164	The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. <i>Journal of Experimental Botany</i> , 2020 , 71, 5495-5505	7	8
163	The Mitochondrial Pentatricopeptide Repeat Protein PPR18 Is Required for the -Splicing of Intron 1 and Essential to Seed Development in Maize. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	4
162	Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. <i>Molecules</i> , 2020 , 25,	4.8	16
161	The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non-Yeast Strains and. <i>Microorganisms</i> , 2020 , 8,	4.9	7
160	Mass Spectrometric Assay of Alpha-Fetoprotein Isoforms for Accurate Serological Evaluation. Analytical Chemistry, 2020 , 92, 4807-4813	7.8	16
159	Self-Validated Homogeneous Immunoassay by Single Nanoparticle in-Depth Scrutinization. <i>Analytical Chemistry</i> , 2020 , 92, 2876-2881	7.8	12
158	Starch digestion in intact pulse cotyledon cells depends on the extent of thermal treatment. <i>Food Chemistry</i> , 2020 , 315, 126268	8.5	21
157	Roquefornine A, a sesterterpenoid with a 5/6/5/5/6-fused ring system from the fungus Penicillium roqueforti YJ-14. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 1463-1468	5.2	9
156	C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. <i>Food Research International</i> , 2020 , 135, 109271	7	23
155	Tag-Free Methodology for Ultrasensitive Biosensing of miRNA Based on Intrinsic Isotope Detection. <i>Analytical Chemistry</i> , 2020 , 92, 8523-8529	7.8	9
154	Missing Data Recovery for Human Mocap Data Based on A-LSTM and LS Constraint 2020 ,		2
153	Capsanthin extract prevents obesity, reduces serum TMAO levels and modulates the gut microbiota composition in high-fat-diet induced obese C57BL/6J mice. <i>Food Research International</i> , 2020 , 128, 108774	7	24

152	Graphene Oxide Promotes Cancer Metastasis through Associating with Plasma Membrane To Promote TGF-Isignaling-Dependent Epithelial-Mesenchymal Transition. <i>ACS Nano</i> , 2020 , 14, 818-827	16.7	21	
151	Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver. <i>ACS Nano</i> , 2020 , 14, 877-890	16.7	12	
150	Potential correlation between carbohydrate-active enzyme family 48 expressed by gut microbiota and the expression of intestinal epithelial AMP-activated protein kinase \(\precedit{\textit{Journal of Food}} \) Biochemistry, 2020 , 44, e13123	3.3	2	
149	Ligand-Sharing-Mediated Synthesis of Intermetallic FeM Clusters Embedded in Ultrathin Fe2O3 Nanosheets. <i>Advanced Functional Materials</i> , 2020 , 30, 1906995	15.6	О	
148	Interaction mechanism between Eglucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques. <i>International Journal of Biological Macromolecules</i> , 2020 , 143, 173-180	7.9	9	
147	Simultaneous monitoring of polarity changes of lipid droplets and lysosomes with two-photon fluorescent probes. <i>Analytica Chimica Acta</i> , 2020 , 1136, 34-41	6.6	13	
146	Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. <i>Journal of Catalysis</i> , 2020 , 391, 414-423	7.3	19	
145	Comparison of the inhibitory effects of procyanidins with different structures and their digestion products against acrylamide-induced cytotoxicity in IPEC-J2 cells. <i>Journal of Functional Foods</i> , 2020 , 72, 104073	5.1	3	
144	Homogeneous Multiplex Immunoassay for One-Step Pancreatic Cancer Biomarker Evaluation. <i>Analytical Chemistry</i> , 2020 , 92, 16105-16112	7.8	17	
143	Surface-Enhanced Raman Spectroscopic Evidence on the Origin of Selectivity in CO Electrocatalytic Reduction. <i>ACS Nano</i> , 2020 , 14, 11363-11372	16.7	47	
142	Fused behavior recognition model based on attention mechanism. <i>Visual Computing for Industry, Biomedicine, and Art,</i> 2020 , 3, 7	2.9	6	
141	Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. <i>Journal of Molecular Histology</i> , 2020 , 51, 549-558	3.3	9	
140	Zinc in Wheat Grain, Processing, and Food. Frontiers in Nutrition, 2020, 7, 124	6.2	16	
139	EMT Conversion of Composite Broadband Absorbent Metamaterials for Stealth Application Over X-Bands. <i>IEEE Access</i> , 2020 , 8, 153787-153798	3.5	1	
138	Genome-Wide Identification and Analysis on YUCCA Gene Family in Fort. and Functional Exploration. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	1	
137	Structural Properties of Homogeneous Polysaccharide Fraction Released from Wheat Germ by Hydrothermal Treatment. <i>Carbohydrate Polymers</i> , 2020 , 240, 116238	10.3	7	
136	A strategy for identifying species-specific peptide biomarkers in deer-hide gelatin using untargeted and targeted mass spectrometry approaches. <i>Analytica Chimica Acta</i> , 2019 , 1092, 32-41	6.6	15	
135	Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. <i>Biosensors and Bioelectronics</i> , 2019 , 144, 111671	11.8	15	

134	Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	49
133	Influence of Konjac Glucomannan and Frozen Storage on Rheological and Tensile Properties of Frozen Dough. <i>Polymers</i> , 2019 , 11,	4.5	7
132	Label-Free Nuclease Assay with Long-Term Stability. <i>Analytical Chemistry</i> , 2019 , 91, 8691-8696	7.8	11
131	Effects of Lactobacillus plantarum NJAU-01 on the protein oxidation of fermented sausage. <i>Food Chemistry</i> , 2019 , 295, 361-367	8.5	13
130	Effect of Degree of Konjac Glucomannan Enzymatic Hydrolysis on the Physicochemical Characteristic of Gluten and Dough. <i>ACS Omega</i> , 2019 , 4, 9654-9663	3.9	9
129	Comparison of the peptidome released from keratins in Saiga antelope horn and goat horn under simulated gastrointestinal digestion. <i>Electrophoresis</i> , 2019 , 40, 2759-2766	3.6	1
128	Chlorogenic acid prevents paraquat-induced apoptosis via Sirt1-mediated regulation of redox and mitochondrial function. <i>Free Radical Research</i> , 2019 , 53, 680-693	4	15
127	Synergistic inhibitory effects of procyanidin B and catechin on acrylamide in food matrix. <i>Food Chemistry</i> , 2019 , 296, 94-99	8.5	6
126	Comparative proteomic analysis of plasma of children with congenital heart disease. <i>Electrophoresis</i> , 2019 , 40, 1848-1854	3.6	2
125	Fast response near-infrared fluorescent probe for hydrogen sulfide in natural waters. <i>Talanta</i> , 2019 , 202, 159-164	6.2	20
124	Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse. <i>Scientific Reports</i> , 2019 , 9, 5022	4.9	4
123	Steam explosion modification on tea waste to enhance bioactive compoundsPextractability and antioxidant capacity of extracts. <i>Journal of Food Engineering</i> , 2019 , 261, 51-59	6	21
122	Isotopic core-satellites enable accurate and sensitive bioassay of adenosine triphosphate. <i>Chemical Communications</i> , 2019 , 55, 10665-10668	5.8	5
121	Lycopene, amaranth, and sorghum red pigments counteract obesity and modulate the gut microbiota in high-fat diet fed C57BL/6 mice. <i>Journal of Functional Foods</i> , 2019 , 60, 103437	5.1	11
120	Label-Free CRISPR/Cas9 Assay for Site-Specific Nucleic Acid Detection. <i>Analytical Chemistry</i> , 2019 , 91, 10870-10878	7.8	13
119	Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. <i>Food and Function</i> , 2019 , 10, 7174-7187	6.1	24
118	Potential Correlation between Dietary Fiber-Suppressed Microbial Conversion of Choline to Trimethylamine and Formation of Methylglyoxal. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 13247-13257	5.7	9
117	Combination of [12]aneN and Triphenylamine-Benzylideneimidazolone as Nonviral Gene Vectors with Two-Photon and AIE Properties. <i>ACS Applied Materials & Description of English Action (Note: Action of English Action of English Action of English English (Note: Action of English English English).</i>	9.5	17

FPGA Implementation of SAR Imaging Processing System **2019**,

115	Raspberry-Like Mesoporous ZnGaSiO:Cr Nanocarriers for Enhanced Near-Infrared Afterglow Imaging and Combined Cancer Chemotherapy. <i>ACS Applied Materials & District Materials & Di</i>	4 ⁴ 4 ⁵ 88	16
114	Combination of honey with metformin enhances glucose metabolism and ameliorates hepatic and nephritic dysfunction in STZ-induced diabetic mice. <i>Food and Function</i> , 2019 , 10, 7576-7587	6.1	6
113	Silver Nanoparticles Compromise Female Embryonic Stem Cell Differentiation through Disturbing X Chromosome Inactivation. <i>ACS Nano</i> , 2019 , 13, 2050-2061	16.7	8
112	A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. <i>Talanta</i> , 2019 , 194, 452-460	6.2	13
111	Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. <i>Chemico-Biological Interactions</i> , 2018 , 288, 12-23	5	14
110	Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. <i>Ultrasonics Sonochemistry</i> , 2018 , 46, 36-45	8.9	68
109	Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. <i>Food Research International</i> , 2018 , 108, 151-160	7	36
108	Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. <i>Food Hydrocolloids</i> , 2018 , 81, 39-47	10.6	34
107	Structural Variation and Microrheological Properties of a Homogeneous Polysaccharide from Wheat Germ. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 2977-2987	5.7	22
106	Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. <i>Food Chemistry</i> , 2018 , 252, 243-249	8.5	81
105	Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. <i>Food and Function</i> , 2018 , 9, 2112-2120	6.1	33
104	Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties. <i>Food Chemistry</i> , 2018 , 260, 37-43	8.5	27
103	Au@Pd Bimetallic Nanocatalyst for Carbon-Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au. <i>Environmental Science & Description</i> (2018), 52, 4244	-4235	33
102	A comparative study on the adsorption and desorption characteristics of flavonoids from honey by six resins. <i>Food Chemistry</i> , 2018 , 268, 424-430	8.5	18
101	Defect Sites in Ultrathin Pd Nanowires Facilitate the Highly Efficient Electrochemical Hydrodechlorination of Pollutants by H*. <i>Environmental Science & amp; Technology</i> , 2018 , 52, 9992-1000	2 ^{10.3}	63
100	Effect of microparticulation and xanthan gum on the stability and lipid digestion of oil-in-water emulsions stabilized by whey protein. <i>Food and Function</i> , 2018 , 9, 4683-4694	6.1	6
99	The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. <i>Plant Journal</i> , 2018 , 95, 919	6.9	28

1

98	Selection of non- yeasts for orange wine fermentation based on their enological traits and volatile compounds formation. <i>Journal of Food Science and Technology</i> , 2018 , 55, 4001-4012	3.3	10
97	Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague-Dawley rats. <i>Food and Nutrition Research</i> , 2018 , 62,	3.1	10
96	Self-assembly of supramolecular nanotubes/microtubes from 3,5-dimethyl-4-iodopyrazole for plasmonic nanoparticle organization. <i>Nanoscale</i> , 2018 , 10, 20804-20812	7.7	4
95	Optimization of the Production of Microparticulated Egg White Proteins as Fat Mimetic in Salad Dressings Using Uniform Design. <i>Food Science and Technology Research</i> , 2018 , 24, 817-827	0.8	6
94	Effect of Extrusion, Steam Explosion and Enzymatic Hydrolysis on Functional Properties of Wheat Bran. <i>Food Science and Technology Research</i> , 2018 , 24, 591-598	0.8	5
93	Poly(thymine)-CuNPs: Bimodal Methodology for Accurate and Selective Detection of TNT at Sub-PPT Levels. <i>Analytical Chemistry</i> , 2018 , 90, 14469-14474	7.8	27
92	Effects of Extrusion on Physicochemical Properties of Oat Polysaccharides and Its Improvement in Flour Dough Extensibility and Gumminess. <i>Food Science and Technology Research</i> , 2018 , 24, 145-150	0.8	
91	Effects of incorporation of black garlic on rheological, textural and sensory properties of rye (Secale cereale L.) flour noodles. <i>CYTA - Journal of Food</i> , 2018 , 16, 1102-1108	2.3	1
90	Beneficial Effects of Poplar Buds on Hyperglycemia, Dyslipidemia, Oxidative Stress, and Inflammation in Streptozotocin-Induced Type-2 Diabetes. <i>Journal of Immunology Research</i> , 2018 , 2018, 7245956	4.5	14
89	Further evidence for sustainable alternatives to replace threatened animal horn based on quantitative proteomic analysis. <i>Electrophoresis</i> , 2018 , 39, 3185-3190	3.6	2
88	Edible Gum-Phenolic-Lipid Incorporated Gluten Films for Food Packaging. <i>Journal of Food Science</i> , 2018 , 83, 1622-1630	3.4	9
87	Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159. <i>Food Research International</i> , 2018 , 112, 152-	1 <i>3</i> 9	5
86	Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. <i>Food Hydrocolloids</i> , 2018 , 84, 571-580	10.6	40
85	Study on interaction between human salivary Amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis. <i>International Journal of Biological Macromolecules</i> , 2018, 118, 1136-1141	7.9	12
84	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4478-4485	13	46
83	Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. <i>Food Research International</i> , 2017 , 95, 19-27	7	29
82	Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation. <i>Meat Science</i> , 2017 , 129, 176-184	6.4	23
81	Identification of Al on the Colloid Surface Using Surface-Enhanced Raman Spectroscopy. Environmental Science & amp; Technology, 2017, 51, 2899-2906	10.3	10

(2016-2017)

80	Investigating the chemical constituent and the suppressive effects of alliin hydrolysate on E.coli. <i>Natural Product Research</i> , 2017 , 31, 2814-2817	2.3	2
79	The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. <i>New Phytologist</i> , 2017 , 215, 351-367	9.8	52
78	Atomic-Level-Designed Catalytically Active Palladium Atoms on Ultrathin Gold Nanowires. <i>Advanced Materials</i> , 2017 , 29, 1604571	24	41
77	Use of Polycrystalline Ice for Assembly of Large Area Au Nanoparticle Superstructures as SERS Substrates. <i>ACS Applied Materials & Discourse (Materials & Materials & Material</i>	9.5	16
76	Aggregation and rheological behavior of soluble dietary fibers from wheat bran. <i>Food Research International</i> , 2017 , 102, 291-302	7	20
75	What is meat in China?. <i>Animal Frontiers</i> , 2017 , 7, 53-56	5.5	13
74	Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways. <i>Molecular Nutrition and Food Research</i> , 2017 , 61, 1700473	5.9	31
73	Using soy protein SiOx nanocomposite film coating to extend the shelf life of apple fruit. <i>International Journal of Food Science and Technology</i> , 2017 , 52, 2018-2030	3.8	30
72	Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. <i>Food and Function</i> , 2017 , 8, 3178-3186	6.1	35
71	PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. <i>Tree Physiology</i> , 2017 , 37, 1713-1726	4.2	60
70	Turn-on Fluorescent Probe for Exogenous and Endogenous Imaging of Hypochlorous Acid in Living Cells and Quantitative Application in Flow Cytometry. <i>Analytical Chemistry</i> , 2017 , 89, 9544-9551	7.8	56
69	Label-Free DNA Assay by Metal Stable Isotope Detection. <i>Analytical Chemistry</i> , 2017 , 89, 13269-13274	7.8	34
68	Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters. <i>Environmental Science & Environmental Science & En</i>	10.3	11
67	The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability. <i>Materials Letters</i> , 2017 , 207, 62-65	3.3	19
66	Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios. <i>Food Chemistry</i> , 2017 , 221, 2010-2017	8.5	48
65	Succinylated Soy Protein Film Coating Extended the Shelf Life of Apple Fruit. <i>Journal of Food Processing and Preservation</i> , 2017 , 41, e13024	2.1	9
64	Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 1-8	21.8	146
63	Identification of Antioxidants in Aged Garlic Extract by Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Mass Spectrometry. <i>International Journal of Food Properties</i> , 2016 , 19, 474-	483	5

62	Soluble Dietary Fiber Fractions in Wheat Bran and Their Interactions with Wheat Gluten Have Impacts on Dough Properties. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 8735-8744	5.7	36
61	A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv]. <i>BMC Genomics</i> , 2016 , 17, 336	4.5	45
60	Low temperature synthesized ultrathin Fe2O3 nanosheets show similar adsorption behaviour for As(III) and As(V). <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7606-7614	13	44
59	Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. <i>Cellulose</i> , 2016 , 23, 439-450	5.5	67
58	Hydrothermal synthesis of N-doped TiO 2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. <i>Journal of Alloys and Compounds</i> , 2016 , 656, 24-32	5.7	116
57	Combined Superfine Grinding and Heat-Shearing Treatment for the Microparticulation of Whey Proteins. <i>Food and Bioprocess Technology</i> , 2016 , 9, 378-386	5.1	14
56	Urban Expansion and Agricultural Land Loss in China: A Multiscale Perspective. <i>Sustainability</i> , 2016 , 8, 790	3.6	60
55	Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data. <i>Remote Sensing</i> , 2016 , 8, 631	5	24
54	Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. <i>PLoS ONE</i> , 2016 , 11, e0149137	3.7	23
53	Physicochemical and Antioxidative Properties of Superfine-ground Oat Bran Polysaccharides. <i>Food Science and Technology Research</i> , 2016 , 22, 101-109	0.8	4
52	Reduction of particle size based on superfine grinding: Effects on structure, rheological and gelling properties of whey protein concentrate. <i>Journal of Food Engineering</i> , 2016 , 186, 69-76	6	29
51	Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats. <i>Food and Function</i> , 2016 , 7, 2469-78	6.1	45
50	Tracking the Fate of Surface Plasmon Resonance-Generated Hot Electrons by In Situ SERS Surveying of Catalyzed Reaction. <i>Small</i> , 2016 , 12, 6378-6387	11	14
49	Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film. <i>Chemical Communications</i> , 2015 , 51, 1309-12	5.8	22
48	Comparative studies on physicochemical properties of raw and hydrolyzed oat Eglucan and their application in low-fat meatballs. <i>Food Hydrocolloids</i> , 2015 , 51, 424-431	10.6	26
47	Effects of ultrafine grinding and cellulase hydrolysis treatment on physicochemical and rheological properties of oat (Avena nuda L.) Eglucans. <i>Journal of Cereal Science</i> , 2015 , 65, 125-131	3.8	20
46	Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein concentrate and its relation tolemulsions stability. <i>Food Hydrocolloids</i> , 2015 , 51, 512-518	10.6	72
45	Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. <i>ACS Applied Materials & Directed Hydrogen</i> 16730-7	9.5	16

(2014-2015)

44	Isolation, purification and identification of antioxidants in an aqueous aged garlic extract. <i>Food Chemistry</i> , 2015 , 187, 37-43	8.5	32
43	NHC macrometallocycles of mercury(II) and silver(I): synthesis, structural studies and recognition of Hg(II) complex 4 for silver ion. <i>RSC Advances</i> , 2015 , 5, 28435-28447	3.7	13
42	An evaluation of Suomi NPP-VIIRS data for surface water detection. <i>Remote Sensing Letters</i> , 2015 , 6, 155-164	2.3	31
41	Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis. Journal of Chromatography A, 2015 , 1395, 7-15	4.5	61
40	Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. <i>Scientific Reports</i> , 2015 , 5, 9674	4.9	46
39	Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. <i>ACS Nano</i> , 2015 , 9, 10498-515	16.7	267
38	Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins. <i>Food Science and Biotechnology</i> , 2015 , 24, 1637-1643	3	33
37	Speciation Analysis of Labile and Total Silver(I) in Nanosilver Dispersions and Environmental Waters by Hollow Fiber Supported Liquid Membrane Extraction. <i>Environmental Science & Environmental Scie</i>	10.3	10
36	Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2794-2801	13	64
35	Evaluation of Alliin, Saccharide Contents and Antioxidant Activities of Black Garlic during Thermal Processing. <i>Journal of Food Biochemistry</i> , 2015 , 39, 39-47	3.3	48
34	The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic Eamylase. <i>Food Chemistry</i> , 2015 , 174, 291-8	8.5	44
33	Preparation and Intramolecular C?C Coupling Reaction for Bis-benzimidazolium Salt. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1037-1040	4.9	2
32	The Physicochemical Changes of Black Garlic during Thermal Processing. <i>Advance Journal of Food Science and Technology</i> , 2015 , 7, 712-715	0.1	2
31	Motion Key-Frame Extraction by Using Optimized t-Stochastic Neighbor Embedding. <i>Symmetry</i> , 2015 , 7, 395-411	2.7	1
30	Somatostatin Improved B Cells Mature in Macaques during Intestinal Ischemia-Reperfusion. <i>PLoS ONE</i> , 2015 , 10, e0133692	3.7	8
29	Incorporation of the fluoride induced Si-O bond cleavage and functionalized gold nanoparticle aggregation into one colorimetric probe for highly specific and sensitive detection of fluoride. <i>Analytica Chimica Acta</i> , 2014 , 820, 139-45	6.6	19
28	Graphene sensing an inhomogeneous strain due to the surface relief in FeNiCoTi shape memory alloy. <i>Journal of Raman Spectroscopy</i> , 2014 , 45, 1-6	2.3	3
27	Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 969-75	6.4	58

26	N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes. <i>RSC Advances</i> , 2014 , 4, 47455-47460	3.7	23
25	Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions. <i>Analytical Chemistry</i> , 2014 , 86, 7286-92	7.8	48
24	Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. <i>ACS Nano</i> , 2014 , 8, 5813-25	16.7	72
23	Rapid chromatographic separation of dissoluble Ag(I) and silver-containing nanoparticles of 1-100 nanometer in antibacterial products and environmental waters. <i>Environmental Science & Enpironmental Science & Enpironmental</i>	10.3	85
22	A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation. <i>Plant Cell, Tissue and Organ Culture</i> , 2014 , 119, 553-563	2.7	27
21	Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. <i>LWT - Food Science and Technology</i> , 2014 , 58, 594-601	5.4	68
20	In vitro study of antigrowth capacity and antiacid capacity on Sreptococcus sobrinus 6715 of sorghum procyanidin dimers. <i>Pakistan Journal of Pharmaceutical Sciences</i> , 2014 , 27, 695-701	0.4	1
19	The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxideß biocompatibility. <i>Journal of Environmental Sciences</i> , 2013 , 25, 873-81	6.4	38
18	In SituDetection of Acid Orange II in Food Based on Shell-Isolated Au@SiO2Nanoparticle-Enhanced Raman Spectroscopy. <i>Acta Chimica Sinica</i> , 2012 , 70, 1686	3.3	12
17	Fabrication of a Au nanoporous film by self-organization of networked ultrathin nanowires and its application as a surface-enhanced Raman scattering substrate for single-molecule detection. <i>Analytical Chemistry</i> , 2011 , 83, 9131-7	7.8	51
16	Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. <i>Analytical Chemistry</i> , 2011 , 83, 6875-	- 8 2 ⁸	177
15	Cysteine modified small ligament Au nanoporous film: an easy fabricating and highly efficient surface-assisted laser desorption/ionization substrate. <i>Analytical Chemistry</i> , 2011 , 83, 3668-74	7.8	19
14	Inductively coupled plasma mass spectrometry for determination of total urinary protein with CdTe quantum dots label. <i>Journal of Analytical Atomic Spectrometry</i> , 2011 , 26, 2493	3.7	21
13	Applications of Raman-based techniques to on-site and in-vivo analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 1462-1476	14.6	36
12	Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation. <i>Journal of Pharmaceutical Sciences</i> , 2011 , 100, 3186-3	1393	45
11	In situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13581		121
10	Capping agent replacement induced self-organization of ultrathin nanowires: a new and general approach for fabricating noble metal nanoporous films with small ligament sizes. <i>Chemical Communications</i> , 2011 , 47, 1613-5	5.8	12
9	Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. <i>Chemosphere</i> , 2010 , 80, 693-700	8.4	24

LIST OF PUBLICATIONS

8	Use of Triton X-114 as a weak capping agent for one-pot aqueous phase synthesis of ultrathin noble metal nanowires and a primary study of their electrocatalytic activity. <i>Chemical Communications</i> , 2010 , 46, 7010-2	5.8	47
7	Ionic liquids in sample preparation. Analytical and Bioanalytical Chemistry, 2009, 393, 871-83	4.4	153
6	Inorganic arsenic speciation analysis of water samples by trapping arsine on tungsten coil for atomic fluorescence spectrometric determination. <i>Talanta</i> , 2009 , 78, 885-90	6.2	36
5	Cloud Point Extraction as an Advantageous Preconcentration Approach for Analysis of Trace Silver Nanoparticles in Environmental Waters. <i>Analytical Chemistry</i> , 2009 , 81, 6496-6502	7.8	172
4	Visual and colorimetric detection of Hg(2+) by cloud point extraction with functionalized gold nanoparticles as a probe. <i>Chemical Communications</i> , 2009 , 7030-2	5.8	68
3	Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. <i>Chemical Communications</i> , 2009 , 1514-6	5.8	96
2	Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy,</i> 2007 , 62, 499-503	3.1	50
1	ICPMS based multiplexed bioassay: Principles, approaches and progresses. <i>Applied Spectroscopy Reviews</i> ,1-26	4.5	3