
Christian Rotsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924522/publications.pdf Version: 2024-02-01

CHRISTIAN ROTSCH

#	Article	IF	CITATIONS
1	Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages. Materials, 2017, 10, 52.	2.9	48
2	ConText: Contactless Sensors For Body Monitoring Incorporated In Textiles. , 2007, , .		14
3	Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components. Jom, 2018, 70, 321-327.	1.9	13
4	Experimental validation of adaptive pedicle screws—a novel implant concept using shape memory alloys. Medical and Biological Engineering and Computing, 2020, 58, 55-65.	2.8	9
5	Novel concept of a modular hip implant could contribute to less implant failure in THA: a hypothesis. Patient Safety in Surgery, 2018, 12, 1.	2.3	8
6	Concept of patient-specific shape memory implants for the treatment of orbital floor fractures. Oral and Maxillofacial Surgery, 2017, 21, 179-185.	1.3	7
7	A technical concept of a computer game for patients with Parkinson's disease – a new form of PC-based physiotherapy. International Journal of Neuroscience, 2019, 129, 770-775.	1.6	7
8	Biological Cell Investigation of Structured Nitinol Surfaces for the Functionalization of Implants. Materials, 2020, 13, 3264.	2.9	7
9	Integrating Tactile Feedback in an Acetabular Reamer for Surgical VR-Training. , 2019, , .		6
10	A cadaver-based biomechanical model of acetabulum reaming for surgical virtual reality training simulators. Scientific Reports, 2020, 10, 14545.	3.3	6
11	Development of Patient-specific Orbital Floor Implants Made of Shape Memory Alloys. Procedia CIRP, 2016, 49, 143-146.	1.9	5
12	Investigation into the Hybrid Production of a Superelastic Shape Memory Alloy with Additively Manufactured Structures for Medical Implants. Materials, 2021, 14, 3098.	2.9	5
13	Development and Validation of Bone Models using Structural Dynamic Measurement Methods. Current Directions in Biomedical Engineering, 2019, 5, 343-345.	0.4	4
14	Session 18. Organ and patient support systems I. Biomedizinische Technik, 2017, 62, .	0.8	2
15	Early Virtual Reality User Experience and Usability Assessment of a Surgical Shape Memory Alloy Aspiration/Irrigation Instrument. , 2019, , .		2
16	Feasibility of implants with superelastic behaviour for midface reconstruction. Journal of Biomaterials Applications, 2020, 34, 1449-1457.	2.4	2
17	Comparison of Resistive and Optical Strain Measurement for Early Fracture Detection. Current Directions in Biomedical Engineering, 2020, 6, 196-199.	0.4	1
18	Functionalization of screw implants with superelastic structured Nitinol anchoring elements. BioMedical Engineering OnLine, 2022, 21, 3.	2.7	1