
O P Zhirnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924408/publications.pdf Version: 2024-02-01

Ο Ρ ΖΗΙΡΝΟΥ

#	Article	IF	CITATIONS
1	Novel Negative Sense Genes in the RNA Genome of Coronaviruses. Doklady Biochemistry and Biophysics, 2021, 496, 27-31.	0.3	3
2	Favipiravir: the hidden threat of mutagenic action. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 213-220.	0.3	4
3	The cleavage of spike protein ĐĐ0→ĐĐ1/HA2 by trypsin permits activation of the M2 channel without its proteolytic cleavage in the influenza A virus. Virology, 2021, 559, 86-88.	1.1	0
4	Molecular Targets in the Chemotherapy of Coronavirus Infection. Biochemistry (Moscow), 2020, 85, 523-530.	0.7	10
5	Unique Bipolar Gene Architecture in the RNA Genome of Influenza A Virus. Biochemistry (Moscow), 2020, 85, 387-392.	0.7	4
6	NSP Protein Encoded in Negative NS RNA Strand of Influenza A Virus Induces Cellular Immune Response in Infected Animals. Doklady Biochemistry and Biophysics, 2019, 486, 201-205.	0.3	2
7	Negative-sense virion RNA of segment 8 (NS) of influenza a virus is able to translate in vitro a new viral protein. Doklady Biochemistry and Biophysics, 2017, 473, 122-127.	0.3	8
8	Biochemical variations in cytolytic activity of ortho- and paramyxoviruses in human lung tumor cell culture. Biochemistry (Moscow), 2017, 82, 1048-1054.	0.7	6
9	D.I. Ivanovsky ― A Pioneer Discover of Viruses, As A New Form of Biological Life. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2017, 72, 84-86.	0.2	3
10	Paramyxoviruses activation by host proteases in cultures of normal and cancer cells. Voprosy Virusologii, 2017, 62, 65-72.	0.1	1
11	Intravirion cohesion of matrix protein M1 with ribonucleocapsid is a prerequisite of influenza virus infectivity. Virology, 2016, 492, 187-196.	1.1	7
12	Asymmetric structure of the influenza A virus and novel function of the matrix protein M1. Voprosy Virusologii, 2016, 61, 149-154.	0.1	3
13	Abnormal Morphological Vesicles in Influenza a Virus Exposed to Acid pH. Bulletin of Experimental Biology and Medicine, 2015, 158, 776-780.	0.3	4
14	Therapeutic effect of aerosol form of aprotinin against Influenza. Epidemiology and Infectious Diseases (Russian Journal), 2014, 19, 10-15.	0.1	0
15	Influenza A Virus Proteins NS1 and Hemagglutinin Along with M2 Are Involved in Stimulation of Autophagy in Infected Cells. Journal of Virology, 2013, 87, 13107-13114.	1.5	82
16	Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Research, 2011, 92, 27-36.	1.9	113
17	Structural and evolutionary characteristics of HA, NA, NS and M genes of clinical influenza A/H3N2 viruses passaged in human and canine cells. Journal of Clinical Virology, 2009, 45, 322-333.	1.6	39
18	Prime-boost vaccination with a combination of proteosome-degradable and wild-type forms of two influenza proteins leads to augmented CTL response. Vaccine, 2008, 26, 2177-2185.	1.7	16

O P ZHIRNOV

#	Article	IF	CITATIONS
19	Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. Biochemistry (Moscow), 2007, 72, 398-408.	0.7	7
20	Segment NS of influenza a virus contains an additional gene NSP in positive-sense orientation. Doklady Biochemistry and Biophysics, 2007, 414, 127-133.	0.3	28
21	Immunization with influenza A NP-expressing vaccinia virus recombinant protects mice against experimental infection with human and avian influenza viruses. Archives of Virology, 2006, 151, 921-931.	0.9	43
22	Intracellular cleavage of human influenza a virus hemagglutinin and its inhibition. Biochemistry (Moscow), 2003, 68, 1020-1026.	0.7	13
23	NS1 Protein of Influenza A Virus Down-Regulates Apoptosis. Journal of Virology, 2002, 76, 1617-1625.	1.5	200
24	Interaction of influenza A virus M1 matrix protein with caspases. Biochemistry (Moscow), 2002, 67, 534-539.	0.7	35
25	Title is missing!. Molecular Biology, 2001, 35, 411-416.	0.4	7
26	The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7827-7830.	3.3	59
27	Caspase-Dependent N-Terminal Cleavage of Influenza Virus Nucleocapsid Protein in Infected Cells. Journal of Virology, 1999, 73, 10158-10163.	1.5	83
28	Covalent chromatography of influenza virus membrane M1 protein on activated thiopropyl Sepharose-6B. Biomedical Applications, 1998, 706, 83-89.	1.7	7
29	Histones as a Target for Influenza Virus Matrix Protein M1. Virology, 1997, 235, 302-310.	1.1	44
30	Replication of Influenza B virus in chicken embryos is suppressed by exogenous aprotinin. Archives of Virology, 1994, 135, 209-216.	0.9	17
31	Disassembly of Influenza C Viruses, Distinct from That of Influenza A and B Viruses Requires Neutral-Alkaline pH. Virology, 1994, 200, 284-291.	1.1	11
32	Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice. Antiviral Research, 1994, 23, 107-118.	1.9	54
33	Isolation of matrix protein M1 from influenza viruses by acid-dependent extraction with nonionic detergent. Virology, 1992, 186, 324-330.	1.1	110
34	Solubilization of matrix protein M1/M from virions occurs at different pH for orthomyxo- and paramyxoviruses. Virology, 1990, 176, 274-279.	1.1	98
35	The host origin of influenza A viruses can be assessed by the intracellular cleavage of the viral nucleocapsid protein. Archives of Virology, 1988, 99, 277-284.	0.9	8
36	High protection of animals lethally infected with influenza virus by aprotinin-rimantadine combination. Journal of Medical Virology, 1987, 21, 161-167.	2.5	30

O P ZHIRNOV

#	Article	lF	CITATIONS
37	Alphavirus replication in cultured cells and infected animals is inhibited by antiproteinase agents. Antiviral Research, 1986, 6, 255-265.	1.9	5
38	Myxovirus Replication in Chicken Embryos Can Be Suppressed by Aprotinin Due to the Blockage of Viral Glycoprotein Cleavage. Journal of General Virology, 1985, 66, 1633-1638.	1.3	39
39	Suppression of Influenza Virus Replication in Infected Mice by Protease Inhibitors. Journal of General Virology, 1984, 65, 191-196.	1.3	75
40	Proteolytic Activation of Influenza WSN Virus in Cultured Cells is Performed by Homologous Plasma Enzymes. Journal of General Virology, 1982, 63, 469-474.	1.3	27
41	A modified plaque assay method for accurate analysis of infectivity of influenza viruses with uncleaved hemagglutinin. Archives of Virology, 1982, 71, 177-183.	0.9	30
42	Protective effect of protease inhibitors in influenza virus infected animals. Archives of Virology, 1982, 73, 263-272.	0.9	31
43	Two forms of influenza virus nucleoprotein in infected cells and virions. Virology, 1981, 109, 174-179.	1.1	40
44	Protein Synthesis in Sendai Virus-infected Cells. Journal of General Virology, 1975, 27, 319-327.	1.3	20
45	The Properties of the Sendai Virus Ribonucleoproteins Involved in Genome Transcription in Infected Cells. Journal of General Virology, 1974, 24, 409-423.	1.3	2
46	Deoxycholate-mediated cleavage of the protein of Sendai virus nucleocapsid derived from infected cells. Biochemical and Biophysical Research Communications, 1974, 59, 1018-1022.	1.0	3