Roberto Gutiérrez-Dorado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924078/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of germination and UV-B elicitation on chemical compositions, antioxidant activities, and phytochemical contents of underutilised Mexican blue maize seeds. , 2022, 29, 300-310.		Ο
2	Preparation of surfactant-free emulsions using amaranth starch modified by reactive extrusion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125550.	2.3	15
3	Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC. Molecules, 2021, 26, 2103.	1.7	6
4	Nutritional, antioxidant and phytochemical characterization of healthy ready-to-eat expanded snack produced from maize/common bean mixture by extrusion. LWT - Food Science and Technology, 2021, 142, 111053.	2.5	17
5	Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition, 2020, 75, 252-257.	1.4	26
6	Effect of extrusion conditions on the anthocyanin content, functionality, and pasting properties of obtained nixtamalized blue corn flour (<i>Zea mays</i> L.) and process optimization. Journal of Food Science, 2020, 85, 2143-2152.	1.5	11
7	Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. LWT - Food Science and Technology, 2020, 124, 109172.	2.5	38
8	Assessing the Sensitizing and Allergenic Potential of the Albumin and Globulin Fractions from Amaranth (Amaranthus hypochondriacus) Grains before and after an Extrusion Process. Medicina (Lithuania), 2019, 55, 72.	0.8	6
9	Germination in Optimal Conditions as Effective Strategy to Improve Nutritional and Nutraceutical Value of Underutilized Mexican Blue Maize Seeds. Plant Foods for Human Nutrition, 2019, 74, 192-199.	1.4	14
10	Nutritional and antioxidant potential of a desert underutilized legume – tepary bean (Phaseolus) Tj ETQq0 0	0 rgBT/Ove	erlogk 10 Tf 50
11	Effect of Extrusion Conditions and the Optimization of Phenolic Compound Content and Antioxidant Activity of Wheat Bran Using Response Surface Methodology. Plant Foods for Human Nutrition, 2018, 73, 228-234.	1.4	25
12	Modeling of Effective Moisture Diffusivity in Corn Tortilla Baking. Journal of Food Science, 2018, 83, 2167-2175.	1.5	5
13	Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components. Foods, 2018, 7, 124.	1.9	17
14	Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess. Plant Foods for Human Nutrition, 2017, 72, 345-352.	1.4	51
15	Specific Anthocyanin Contents of Whole Blue Maize Second-Generation Snacks: An Evaluation Using Response Surface Methodology and Lime Cooking Extrusion. Journal of Chemistry, 2016, 2016, 1-8.	0.9	8
16	Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 2016, 32, 75.	1.7	41
17	Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. Plant Foods for Human Nutrition, 2016, 71, 218-224.	1.4	29
18	Improving bioactivities of Jatropha curcas protein hydrolysates by optimizing with response surface methodology the extrusion cooking process. Industrial Crops and Products, 2016, 85, 353-360.	2.5	15

#	Article	IF	CITATIONS
19	Physical, Compositional, and Wetâ€Milling Characteristics of Mexican Blue Maize (<i>Zea mays</i> L.) Landrace. Cereal Chemistry, 2015, 92, 491-496.	1.1	14
20	Heat Transfer during Blanching and Hydrocooling of Broccoli Florets. Journal of Food Science, 2015, 80, E2774-81.	1.5	7
21	Physicochemical, Structural, and Proteomic Analysis of Starch Granules from Maize Landraces of Northwest Mexico. Cereal Chemistry, 2015, 92, 320-326.	1.1	9
22	Enhancement of nutritional properties, and antioxidant and antihypertensive potential of black common bean seeds by optimizing the solid state bioconversion process. International Journal of Food Sciences and Nutrition, 2015, 66, 498-504.	1.3	11
23	Obtaining Ready-to-Eat Blue Corn Expanded Snacks with Anthocyanins Using an Extrusion Process and Response Surface Methodology. Molecules, 2014, 19, 21066-21084.	1.7	20
24	Biochemical characterization of QTLs associated with endosperm modification in quality protein maize. Journal of Cereal Science, 2014, 60, 255-263.	1.8	13
25	Solid-state bioconversion of chickpea (<i>Cicer arietinum</i> L.) by <i>Rhizopus oligosporus</i> to improve total phenolic content, antioxidant activity and hypoglycemic functionality. International Journal of Food Sciences and Nutrition, 2014, 65, 558-564.	1.3	23
26	Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods for Human Nutrition, 2014, 69, 196-202.	1.4	63
27	Production of nixtamalized flour and tortillas from amarantin transgenic maize lime-cooked in a thermoplastic extruder. Journal of Cereal Science, 2013, 58, 465-471.	1.8	9
28	Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (<i>Cicer arietinum</i> L.) cultivars. International Journal of Food Sciences and Nutrition, 2013, 64, 69-76.	1.3	49
29	Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): Nutritional, ACE-inhibitory and antioxidative characterization. LWT - Food Science and Technology, 2012, 46, 91-96.	2.5	47
30	High Antioxidant Activity Mixture of Extruded Whole Quality Protein Maize and Common Bean Flours for Production of a Nutraceutical Beverage Elaborated with a Traditional Mexican Formulation. Plant Foods for Human Nutrition, 2012, 67, 450-456.	1.4	7
31	Angiotensin onverting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hardâ€toâ€cook chickpeas. Journal of the Science of Food and Agriculture, 2012, 92, 1974-1981.	1.7	27
32	Optimization of Extrusion Process for Producing High Antioxidant Instant Amaranth (<i>Amaranthus hypochondriacus</i> L.) Flour Using Response Surface Methodology. Applied Mathematics, 2012, 03, 1516-1525.	0.1	28
33	Nixtamalised flour and tortillas from transgenic maize (Zea mays L.) expressing amarantin: Technological and nutritional properties. Food Chemistry, 2009, 114, 50-56.	4.2	20
34	The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal of Food Science and Technology, 2006, 41, 727-736.	1.3	45
35	Gluten-free healthy snack with high nutritional and nutraceutical value elaborated from a mixture of extruded underutilized grains (quality protein maize/tepary bean). Acta Universitaria, 0, 31, 1-18.	0.2	1
36	Alimento funcional para adultos mayores producido por extrusión a partir de granos integrales de maÃz/frijol común. Acta Universitaria, 0, 31, 1-18.	0.2	0

#	Article	IF	CITATIONS
37	Functional gluten-free beverage elaborated from whole quinoa and defatted chia extruded flours: antioxidant and antihypertensive potentials. Acta Universitaria, 0, 32, 1-22.	0.2	2