Björn C Rall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923925/publications.pdf

Version: 2024-02-01

109137 197535 5,132 49 35 49 h-index citations g-index papers 58 58 58 4732 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fish Species Sensitivity Ranking Depends on Pesticide Exposure Profiles. Environmental Toxicology and Chemistry, 2022, 41, 1732-1741.	2.2	2
2	Thermal acclimation increases the stability of a predator–prey interaction in warmer environments. Global Change Biology, 2021, 27, 3765-3778.	4.2	19
3	Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ, 2021, 9, e12194.	0.9	14
4	Biodiversity of intertidal food webs in response to warming across latitudes. Nature Climate Change, 2020, 10, 264-269.	8.1	40
5	Consistent temperature dependence of functional response parameters and their use in predicting population abundance. Journal of Animal Ecology, 2019, 88, 1670-1683.	1.3	23
6	Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 2019, 3, 919-927.	3.4	157
7	Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos, 2018, 127, 590-598.	1.2	39
8	Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos, 2018, 127, 915-926.	1.2	18
9	Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. Ecology and Evolution, 2018, 8, 12737-12749.	0.8	37
10	Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods in Ecology and Evolution, 2018, 9, 2076-2090.	2.2	67
11	Predicting the consequences of species loss using sizeâ€structured biodiversity approaches. Biological Reviews, 2017, 92, 684-697.	4.7	108
12	Temperature and consumer type dependencies of energy flows in natural communities. Oikos, 2017, 126, 1717-1725.	1.2	52
13	Unexpected changes in community size structure in a natural warming experiment. Nature Climate Change, 2017, 7, 659-663.	8.1	70
14	A general scaling law reveals why the largest animals are not the fastest. Nature Ecology and Evolution, 2017, 1, 1116-1122.	3.4	112
15	How patch size and refuge availability change interaction strength and population dynamics: a combined individual- and population-based modeling experiment. PeerJ, 2017, 5, e2993.	0.9	11
16	Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils. Scientific Reports, 2016, 6, 23584.	1.6	60
17	Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and foodâ€web structure. Global Change Biology, 2016, 22, 220-227.	4.2	125
18	Animal diversity and ecosystem functioning in dynamic food webs. Nature Communications, 2016, 7, 12718.	5.8	107

#	Article	IF	CITATIONS
19	Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R. PeerJ, 2016, 4, e2615.	0.9	4
20	Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Scientific Reports, 2015, 5, 10955.	1.6	52
21	Reducible defence: chemical protection alters the dynamics of predator–prey interactions. Chemoecology, 2015, 25, 53-61.	0.6	16
22	Effects of environmental warming and drought on sizeâ€structured soil food webs. Oikos, 2014, 123, 1224-1233.	1.2	48
23	Litter elemental stoichiometry and biomass densities of forest soil invertebrates. Oikos, 2014, 123, 1212-1223.	1.2	53
24	Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos, 2014, 123, 1192-1198.	1.2	36
25	Ecological stability in response to warming. Nature Climate Change, 2014, 4, 206-210.	8.1	176
26	Unifying elemental stoichiometry and metabolic theory in predicting species abundances. Ecology Letters, 2014, 17, 1247-1256.	3.0	31
27	Body masses, functional responses and predator–prey stability. Ecology Letters, 2013, 16, 1126-1134.	3.0	159
28	Habitat structure alters top-down control in litter communities. Oecologia, 2013, 172, 877-887.	0.9	54
29	The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2935-2944.	1.8	148
30	Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3025-3032.	1.8	55
31	Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2923-2934.	1.8	376
32	Impacts of Warming on the Structure and Functioning of Aquatic Communities. Advances in Ecological Research, 2012, 47, 81-176.	1.4	106
33	Warming effects on consumption and intraspecific interference competition depend on predator metabolism. Journal of Animal Ecology, 2012, 81, 516-523.	1.3	78
34	Plant diversity improves protection against soilâ€borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 2012, 100, 597-604.	1.9	218
35	The Allometry of Prey Preferences. PLoS ONE, 2011, 6, e25937.	1.1	59
36	Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecology Letters, 2011, 14, 993-1000.	3.0	168

#	Article	IF	CITATIONS
37	Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 2011, 17, 1301-1310.	4.2	221
38	Taxonomic versus allometric constraints on nonâ€linear interaction strengths. Oikos, 2011, 120, 483-492.	1.2	77
39	The susceptibility of species to extinctions in model communities. Basic and Applied Ecology, 2011, 12, 590-599.	1.2	54
40	Size-based food web characteristics govern the response to species extinctions. Basic and Applied Ecology, 2011, 12, 581-589.	1.2	24
41	Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic and Applied Ecology, 2011, 12, 571-580.	1.2	80
42	Temperature, predator–prey interaction strength and population stability. Global Change Biology, 2010, 16, 2145-2157.	4.2	326
43	Allometric functional response model: body masses constrain interaction strengths. Journal of Animal Ecology, 2010, 79, 249-256.	1.3	184
44	Predicting the effects of temperature on food web connectance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2081-2091.	1.8	115
45	Habitat structure and prey aggregation determine the functional response in a soil predator–prey interaction. Pedobiologia, 2010, 53, 307-312.	0.5	54
46	Foraging theory predicts predator–prey energy fluxes. Journal of Animal Ecology, 2008, 77, 1072-1078.	1.3	138
47	Foodâ€web connectance and predator interference dampen the paradox of enrichment. Oikos, 2008, 117, 202-213.	1.2	136
48	Allometric degree distributions facilitate food-web stability. Nature, 2007, 450, 1226-1229.	13.7	257
49	CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS. Ecology, 2006, 87, 2411-2417.	1.5	568