
Max Nickolsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923708/publications.pdf Version: 2024-02-01

MAX NICKOLSKY

#	Article	IF	CITATIONS
1	Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination. Ultramicroscopy, 2007, 107, 431-444.	1.9	82
2	Experimental determination of gold speciation in sulfide-rich hydrothermal fluids under a wide range of redox conditions. Chemical Geology, 2017, 471, 52-64.	3.3	33
3	Physico-chemical properties of Chernobyl lava and their destruction products. Progress in Nuclear Energy, 2016, 92, 104-118.	2.9	32
4	Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. New Journal of Chemistry, 2017, 41, 948-957.	2.8	31
5	Ab initio determination of heavy oxide perovskite related structures from precession electron diffraction data. Ultramicroscopy, 2007, 107, 445-452.	1.9	26
6	Covellite CuS as a matrix for "invisible―gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals. Geochimica Et Cosmochimica Acta, 2016, 191, 58-69.	3.9	25
7	Ion implantation in nanodiamonds: size effect and energy dependence. Scientific Reports, 2018, 8, 5099.	3.3	25
8	Platinum transport in chloride-bearing fluids and melts: Insights from in situ X-ray absorption spectroscopy and thermodynamic modeling. Geochimica Et Cosmochimica Acta, 2019, 254, 86-101.	3.9	24
9	The state of Au and As in pyrite studied by X-ray absorption spectroscopy of natural minerals and synthetic phases. Ore Geology Reviews, 2020, 121, 103475.	2.7	23
10	Understanding Self-Assembly of Porphyrin-Based SURMOFs: How Layered Minerals Can Be Useful. Langmuir, 2018, 34, 5184-5192.	3.5	21
11	Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals. Mineralogical Magazine, 2019, 83, 435-451.	1.4	21
12	Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry, 2015, 57, 321-333.	0.7	19
13	Gold Transport in Hydrothermal Chloride-Bearing Fluids: Insights from in Situ X-ray Absorption Spectroscopy and ab Initio Molecular Dynamics. ACS Earth and Space Chemistry, 2019, 3, 240-261.	2.7	19
14	Thermodynamic Behaviors of Adsorbed Methane Storage Systems Based on Nanoporous Carbon Adsorbents Prepared from Coconut Shells. Nanomaterials, 2020, 10, 2243.	4.1	19
15	Intercalation of Porphyrinâ€Based SURMOF in Layered Eu(III) Hydroxide: An Approach Toward Symbimetic Hybrid Materials. Advanced Functional Materials, 2020, 30, 2000681.	14.9	19
16	The State of Platinum in Pyrite Studied by X-Ray Absorption Spectroscopy of Synthetic Crystals. Economic Geology, 2019, 114, 1649-1663.	3.8	13
17	Supramolecular Organogels Based on N-Benzyl, N′-Acylbispidinols. Nanomaterials, 2019, 9, 89.	4.1	11
18	The State of Trace Elements (In, Cu, Ag) in Sphalerite Studied by X-Ray Absorption Spectroscopy of Synthetic Minerals. Minerals (Basel, Switzerland), 2020, 10, 640.	2.0	11

MAX NICKOLSKY

#	Article	IF	CITATIONS
19	Study of mineral grains extracted from the Chernobyl "lava― Mineralogy and Petrology, 2020, 114, 489-499.	1.1	11
20	Potential matrices for immobilization of the rare earth-actinide fraction of high-level waste in the REE2Zr2O7-REE2Ti2O7 system. Radiochemistry, 2015, 57, 187-199.	0.7	10
21	X-ray spectroscopy study of the chemical state of "invisible―Au in synthetic minerals in the Fe-As-S system. American Mineralogist, 2017, 102, .	1.9	10
22	lmaging plates – a new life for electron diffraction structure analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 224-226.	0.8	9
23	Forensic study of early stages of the Chernobyl accident: Story of three hot particles. Journal of Nuclear Materials, 2018, 511, 83-90.	2.7	9
24	Noble Metal Speciations in Hydrothermal Sulphides. Minerals (Basel, Switzerland), 2021, 11, 488.	2.0	9
25	Phase distribution of uranium in matrices for immobilization of the rare earth–actinide fraction of high-level waste. Radiochemistry, 2015, 57, 640-651.	0.7	8
26	Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness. Physics and Chemistry of Minerals, 2017, 44, 287-296.	0.8	8
27	Phase formation at synthesis of murataite-crichtonite ceramics. Journal of Nuclear Materials, 2019, 517, 371-379.	2.7	8
28	Self-propagating high-temperature synthesis and characteristics of cermet matrices for isolation of wastes with long-lived radionuclides. Radiochemistry, 2012, 54, 511-515.	0.7	7
29	Microstructure of Aged 238Pu-doped La-monazite Ceramic and Peculiarities of its X-ray Emission Spectra. MRS Advances, 2020, 5, 1-7.	0.9	7
30	Effect of Gamma Irradiation on Structural Features and Dissolution of Nuclear Waste Na–Al–P Glasses in Water. Sustainability, 2020, 12, 4137.	3.2	7
31	The Charge State of Pt in Binary Compounds and Synthetic Minerals Determined by X-ray Absorption Spectroscopy and Quantum Chemical Calculations. Minerals (Basel, Switzerland), 2021, 11, 79.	2.0	7
32	Predicting the lattice constants of the ternary pyrochlores <i>A</i> ₂ <i>B</i> ₂ O ₆ O′. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 235-240.	1.1	6
33	Electron Backscattered Diffraction for the Study of Matrices for Immobilization of Actinides Composed of the Murataite-Type Phases. Crystallography Reports, 2021, 66, 130-141.	0.6	6
34	Minerals - a special area of electron diffraction structure analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 2003, 218, 316-319.	0.8	5
35	TexPat – a program for quantitative analysis of oblique texture electron diffraction patterns. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 12-19.	0.8	5
36	Structural peculiarities of aged 238Pu-doped monazite. MRS Advances, 2016, 1, 4275-4281.	0.9	5

MAX NICKOLSKY

#	Article	IF	CITATIONS
37	New route for synthesis of Synroc-like ceramic using non-selective sorbent LHT-9. MRS Advances, 2018, 3, 1111-1116.	0.9	5
38	Surface features on aged ²³⁸ Pu-doped Eu-monazite. Radiochimica Acta, 2020, 108, 353-360.	1.2	5
39	Characterization of modified murataite based ceramics as a perspective hosts for actinides, fission, and corrosion products of HLW. Journal of Nuclear Materials, 2020, 529, 151958.	2.7	5
40	Synthesis of Cobalt-Iron Chalcogenide Clusters as Precursors for Catalysts of Oxygen Electroreduction in Alkali Media. European Journal of Inorganic Chemistry, 2020, 2020, 2055-2062.	2.0	5
41	On the carrier phase of the "planetary―noble gases: <scp>TEM</scp> , Raman, and stepped combustion data for acidâ€resistant residues from the Saratov (L4) meteorite. Meteoritics and Planetary Science, 2018, 53, 2343-2356.	1.6	4
42	The solubility of cooperite PtS(cr) at 25 – 450°C, Psat – 1000Âbar and hydrosulfide complexing of platinum in hydrothermal fluids. Chemical Geology, 2021, 559, 119968.	3.3	4
43	Nanoscale catalyst based on a heterometallic carboxylate complex of platinum and iron for hydrogen-air fuel cells. Materials Chemistry and Physics, 2021, 259, 123968.	4.0	3
44	Behavior of implanted Xe, Kr and Ar in nanodiamonds and thin graphene stacks: experiment and modeling. Physical Chemistry Chemical Physics, 2021, 23, 21729-21737.	2.8	3
45	New Instrumentation for TEM Electron Diffraction Structure Analysis: Electron Diffractometry Combined with Beam Precession. , 2006, , 169-183.		2
46	Geochemical conditions for the isolation of the long-lived radioisotope technetium-99. Geochemistry International, 2011, 49, 953-966.	0.7	2
47	Study of Matrices for Immobilization of 99Tc by the EBSD Method. Doklady Earth Sciences, 2021, 500, 794-801.	0.7	2
48	Combination of electron diffractometry, imaging plates (IP) and electron diffraction structure analysis (EDSA). Acta Crystallographica Section A: Foundations and Advances, 2002, 58, c173-c173.	0.3	2
49	X-ray absorption spectroscopy study of the chemistry of «invisible» Au in arsenian pyrites. E3S Web of Conferences, 2019, 98, 05007.	0.5	1
50	Probing the Local Atomic Structure of In and Cu in Sphalerite by XAS Spectroscopy Enhanced by Reverse Monte Carlo Algorithm. Minerals (Basel, Switzerland), 2020, 10, 841.	2.0	1
51	Formation and characterization of an Al-rich metastable phase in the Al–B phase diagram. Journal of Applied Crystallography, 2021, 54, 1121-1126.	4.5	1
52	Comment on "Tolerance factor, phase stability and order–disorder of the pyrochlore structure―by Z. Song and Q. Liu, <i>Inorg. Chem. Front.</i> , 2020, 7 , 1583. Inorganic Chemistry Frontiers, 2022, 9, 1031-1032.	6.0	1
53	A note on the distortion theorem. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 874-878.	1.1	0
54	Comparison of intensities from glass photo plates and imaging plates. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s191-s191.	0.3	0