Sergio Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923564/publications.pdf Version: 2024-02-01

SEDCIO DADDA

#	Article	IF	CITATIONS
1	A novel excisional wound pain model for evaluation of analgesics in rats. Korean Journal of Pain, 2021, 34, 165-175.	2.2	1
2	β ₂ -Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9163-E9171.	7.1	41
3	Serum Protein Profile in Women With Pregnancy Morbidity Associated With Antiphospholipid Syndrome. Journal of Human Reproductive Sciences, 2017, 10, 10-17.	0.9	6
4	Differences in asthma study models and the effectiveness of β ₂ â€adrenoceptor ligands: response to Lipworth <i>et al.</i> . British Journal of Pharmacology, 2016, 173, 250-251.	5.4	1
5	Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β ₂ -Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase–Knockout Mice. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 234-242.	2.9	18
6	Digoxin-Mediated Upregulation of RCS2 Protein Protects against Cardiac Injury. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 311-319.	2.5	20
7	Conditional disruption of interactions between Gαi2 and regulator of G protein signaling (RGS) proteins protects the heart from ischemic injury. BMC Pharmacology & Toxicology, 2014, 15, 29.	2.4	9
8	Cardiotonic Steroids Stabilize Regulator of G Protein Signaling 2 Protein Levels. Molecular Pharmacology, 2012, 82, 500-509.	2.3	23
9	Gαi2 signaling: friend or foe in cardiac injury and heart failure?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 443-453.	3.0	15
10	Generation of GÎ \pm i2 G184S conditional mutant mice to study regulator of G protein signaling (RGS) proteins. FASEB Journal, 2012, 26, 1114.10.	0.5	0
11	l² ₂ -Adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2435-2440.	7.1	104
12	Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 217-224.	3.0	18
13	Changes in β2-adrenoceptor and other signaling proteins produced by chronic administration of â€Î²-blockers' in a murine asthma model. Pulmonary Pharmacology and Therapeutics, 2008, 21, 115-124.	2.6	68
14	The safety and effects of the beta-blocker, nadolol, in mild asthma: An open-label pilot study. Pulmonary Pharmacology and Therapeutics, 2008, 21, 134-141.	2.6	121
15	Chronic Exposure to Beta-Blockers Attenuates Inflammation and Mucin Content in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 256-262.	2.9	128
16	Inverse agonism: from curiosity to accepted dogma, but is it clinically relevant?. Current Opinion in Pharmacology, 2007, 7, 146-150.	3.5	40
17	Getting to the heart of asthma: Can "β blockers―be useful to treat asthma?. , 2007, 115, 360-374.		36