Shaohong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/392316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	5.8	892
2	Metal–Organicâ€Frameworkâ€Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	11.1	678
3	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	7.8	607
4	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	11.1	300
5	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286
6	Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nature Communications, 2019, 10, 1363.	5.8	268
7	3D Porous Nâ€Đoped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	7.8	231
8	A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nature Nanotechnology, 2022, 17, 613-621.	15.6	152
9	Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Materials, 2016, 5, 223-229.	9.5	149
10	Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium–sulfur batteries. Nanoscale, 2015, 7, 7569-7573.	2.8	106
11	Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale, 2015, 7, 1791-1795.	2.8	88
12	Ultrathin Yet Robust Single Lithiumâ€lon Conducting Quasiâ€Solidâ€State Polymerâ€Brush Electrolytes Enable Ultralongâ€Life and Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2100943.	11.1	88
13	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	5.2	78
14	Mechanochemistry: A Green, Activation-Free and Top-Down Strategy to High-Surface-Area Carbon Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 8535-8540.	3.2	78
15	Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy, 2015, 12, 578-587.	8.2	76
16	Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6356-6362.	5.2	67
17	Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon, 2018, 140, 433-440.	5.4	66
18	Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology, 2015, 26, 374003.	1.3	63

Shaohong Liu

#	Article	IF	CITATIONS
19	Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon, 2019, 141, 704-711.	5.4	53
20	A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries. Energy Storage Materials, 2021, 41, 697-702.	9.5	52
21	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. Journal of Materials Chemistry A, 2015, 3, 19657-19661.	5.2	47
22	Stepwise Crosslinking: A Facile Yet Versatile Conceptual Strategy to Nanomorphologyâ€Persistent Porous Organic Polymers. Advanced Materials, 2017, 29, 1700723.	11.1	47
23	FeS/FeNC decorated N,S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chemical Communications, 2020, 56, 12921-12924.	2.2	45
24	<i>In situ</i> synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes. Chemical Communications, 2019, 55, 2644-2647.	2.2	44
25	Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li–O ₂ batteries. Chemical Communications, 2015, 51, 13233-13236.	2.2	35
26	Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 21842-21848.	5.2	33
27	Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high-performance lithium-ion batteries. RSC Advances, 2015, 5, 8929-8932.	1.7	32
28	Ultrafine Fe ₃ O ₄ Quantum Dots on Hybrid Carbon Nanosheets for Longâ€Life, Highâ€Rate Alkaliâ€Metal Storage. ChemElectroChem, 2016, 3, 38-44.	1.7	32
29	Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. Journal of Materials Chemistry A, 2016, 4, 17718-17725.	5.2	30
30	Synthesis of SiO _{<i>x</i>} /C Composite Nanosheets As High-Rate and Stable Anode Materials for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3562-3568.	2.5	30
31	A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chemical Communications, 2017, 53, 6764-6767.	2.2	28
32	Facile Fabrication of Bicomponent CoO/CoFe ₂ O ₄ â€Nâ€Doped Graphene Hybrids with Ultrahigh Lithium Storage Capacity. Particle and Particle Systems Characterization, 2015, 32, 91-97.	1.2	25
33	A new supramolecular binder strongly enhancing the electrochemistry performance for lithium–sulfur batteries. Chemical Communications, 2019, 55, 13924-13927.	2.2	17
34	Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chemical Communications, 2017, 53, 9777-9780.	2.2	16
35	Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery. Nanoscale Research Letters, 2017, 12, 617.	3.1	16
36	3D porous carbon networks with highly dispersed SiO _x by molecular-scale engineering toward stable lithium metal anodes. Chemical Communications, 2019, 55, 6034-6037.	2.2	16

Shaohong Liu

#	Article	IF	CITATIONS
37	Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers. Chemical Communications, 2018, 54, 11431-11434.	2.2	14
38	An interfacial crosslinking strategy to fabricate an ultrathin two-dimensional composite of silicon oxycarbide-enwrapped silicon nanoparticles for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 22950-22957.	5.2	14
39	Molecular Level Design of Nitrogen-Doped Well-Defined Microporous Carbon Spheres for Selective Adsorption and Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 12025-12032.	4.0	14
40	CoS ₂ Nanoparticles Embedded in Covalent Organic Polymers as Efficient Electrocatalyst for Oxygen Evolution Reaction with Ultralow Overpotential. Chemistry - an Asian Journal, 2021, 16, 3102-3106.	1.7	14
41	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules, 2021, 54, 2992-2999.	2.2	13
42	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. ACS Applied Materials & Interfaces, 2019, 11, 18763-18769.	4.0	11
43	Morphology-Persistent Carbonization of Self-Assembled Block Copolymers for Multifunctional Coupled Two-Dimensional Porous Carbon Hybrids. Chemistry of Materials, 2020, 32, 8971-8980.	3.2	11
44	Molecular Engineering toward Highâ€Crystallinity Yet Highâ€Surfaceâ€Area Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction. Advanced Science, 2022, 9, e2103477.	5.6	9
45	A scalable molecular-templating strategy toward well-defined microporous carbon aerogels for efficient water treatment and electrocatalysis. Chemical Engineering Journal, 2021, 418, 129315.	6.6	8
46	Role of a Topotactic Electrochemical Reaction in a Perovskiteâ€Type Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 2474-2479.	1.7	7
47	Crosslinked Polymerâ€Brush Electrolytes: An Approach to Safe Allâ€Solidâ€State Lithium Metal Batteries at Room Temperature. Batteries and Supercaps, 2022, 5, .	2.4	7
48	Fabrication of three-dimensionally nanostructured carbon materials with functional tube-in-tube network units for enhanced electrochemical performances. Carbon, 2019, 151, 103-108.	5.4	6
49	A Dual Component Catalytic System Composed of Nonâ€Noble Metal Oxides for Li–O ₂ Batteries with Enhanced Cyclability. Particle and Particle Systems Characterization, 2016, 33, 228-234.	1.2	3
50	A stepwise crosslinking strategy toward lamellar carbon frameworks with covalently connected alternate layers of porous carbon nanosheets and porous carbon spacers. Chemical Communications, 2018, 54, 10332-10335.	2.2	3
51	Selfâ€5upporting Electrocatalyst Film Based on Selfâ€Assembly of Heterogeneous Bottlebrush and Polyoxometalate for Efficient Hydrogen Evolution Reaction. Macromolecular Rapid Communications, 2022, 43, e2100915.	2.0	3
52	A versatile sea anemone-inspired strategy toward 2D hybrid porous carbons from functional molecular brushes. Chemical Communications, 2021, 57, 1446-1449.	2.2	2
53	Crosslinked Polymerâ€Brush Electrolytes: An Approach to Safe Allâ€Solidâ€State Lithium Metal Batteries at Room Temperature. Batteries and Supercaps, 2022, 5, .	2.4	1