
Howard E Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Easily Processable Phenyleneâ^'Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements. Journal of the American Chemical Society, 2003, 125, 9414-9423.	6.6	373
2	Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors:Â Structural Variation and Thiol-Enhanced Gold Contacts. Journal of the American Chemical Society, 2000, 122, 7787-7792.	6.6	359
3	Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chemical Reviews, 2019, 119, 3-35.	23.0	317
4	Chemical and Physical Sensing by Organic Fieldâ€Effect Transistors and Related Devices. Advanced Materials, 2010, 22, 3799-3811.	11.1	268
5	Thin-Film Organic Electronic Devices. Annual Review of Materials Research, 2009, 39, 71-92.	4.3	235
6	Organic field-effect transistors with polarizable gate insulators. Journal of Applied Physics, 2002, 91, 1572-1576.	1.1	212
7	Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy and Environmental Science, 2012, 5, 8110.	15.6	189
8	Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection. Journal of the American Chemical Society, 2007, 129, 9366-9376.	6.6	164
9	High Conductivity and Electronâ€Transfer Validation in an nâ€Type Fluorideâ€Anionâ€Doped Polymer for Thermoelectrics in Air. Advanced Materials, 2017, 29, 1606928.	11.1	144
10	Monolayerâ€Dimensional 5,5′â€Bis(4â€hexylphenyl)â€2,2′â€bithiophene Transistors and Chemically Resp Heterostructures. Advanced Materials, 2008, 20, 2567-2572.	onsive 11.1	142
11	Vapor sensing with α,ï‰-dihexylquarterthiophene field-effect transistors: The role of grain boundaries. Applied Physics Letters, 2002, 81, 3079-3081.	1.5	138
12	Highly Sensitive NH ₃ Detection Based on Organic Field-Effect Transistors with Tris(pentafluorophenyl)borane as Receptor. Journal of the American Chemical Society, 2012, 134, 14650-14653.	6.6	129
13	Aligned Macroscopic Domains of Optoelectronic Nanostructures Prepared via Shearâ€Flow Assembly of Peptide Hydrogels. Advanced Materials, 2011, 23, 5009-5014.	11.1	128
14	Materials for Printable, Transparent, and Lowâ€Voltage Transistors. Advanced Functional Materials, 2011, 21, 29-45.	7.8	127
15	Integration and Response of Organic Electronics with Aqueous Microfluidics. Langmuir, 2002, 18, 5299-5302.	1.6	116
16	Batteries and charge storage devices based on electronically conducting polymers. Journal of Materials Research, 2010, 25, 1561-1574.	1.2	107
17	Solutionâ€Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility nâ€Channel, Ambipolar, and Nonvolatile Devices. Advanced Functional Materials, 2008, 18, 1832-1839.	7.8	99
18	Low-Temperature-Processible, Transparent, and Air-Operable n-Channel Fluorinated Phenylethylated Naphthalenetetracarboxylic Diimide Semiconductors Applied to Flexible Transistors. Chemistry of Materials, 2009, 21, 94-101.	3.2	84

#	Article	IF	CITATIONS
19	Organic transistors in the new decade: Toward nâ€channel, printed, and stabilized devices. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1090-1120.	2.4	84
20	Solid-state electrical applications of protein and peptide based nanomaterials. Chemical Society Reviews, 2018, 47, 3640-3658.	18.7	84
21	Modification of the Poly(bisdodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants. Journal of the American Chemical Society, 2017, 139, 11149-11157.	6.6	81
22	Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. Journal of Materials Chemistry C, 2015, 3, 6445-6470.	2.7	79
23	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	2.8	76
24	Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chemical Science, 2014, 5, 416-426.	3.7	73
25	Extended Solution Gate OFETâ€Based Biosensor for Labelâ€Free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycolâ€Containing Bioreceptor Layer. Advanced Functional Materials, 2017, 27, 1606506.	7.8	70
26	Airâ€Operable, Highâ€Mobility Organic Transistors with Semifluorinated Side Chains and Unsubstituted Naphthalenetetracarboxylic Diimide Cores: High Mobility and Environmental and Bias Stress Stability from the Perfluorooctylpropyl Side Chain. Advanced Functional Materials, 2010, 20, 2930-2944.	7.8	66
27	Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle. Medical Hypotheses, 2016, 87, 69-74.	0.8	64
28	Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Physical Review B, 2009, 79, .	1.1	63
29	Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor. ACS Applied Materials & Interfaces, 2018, 10, 16233-16237.	4.0	62
30	Diverse Organic Fieldâ€Effect Transistor Sensor Responses from Two Functionalized Naphthalenetetracarboxylic Diimides and Copper Phthalocyanine Semiconductors Distinguishable Over a Wide Analyte Range. Advanced Functional Materials, 2013, 23, 4094-4104.	7.8	60
31	Peptide-Based Supramolecular Semiconductor Nanomaterials via Pd-Catalyzed Solid-Phase "Dimerizations― ACS Macro Letters, 2012, 1, 1326-1329.	2.3	59
32	Pursuing Polymer Dielectric Interfacial Effect in Organic Transistors for Photosensing Performance Optimization. Advanced Science, 2017, 4, 1700442.	5.6	59
33	Through Thick and Thin: Tuning the Threshold Voltage in Organic Field-Effect Transistors. Accounts of Chemical Research, 2014, 47, 1369-1377.	7.6	58
34	Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures. ACS Nano, 2015, 9, 12401-12409.	7.3	57
35	Synergistically Improved Molecular Doping and Carrier Mobility by Copolymerization of Donor–Acceptor and Donor–Donor Building Blocks for Thermoelectric Application. Advanced Functional Materials, 2020, 30, 2004378.	7.8	51
36	Organic Semiconductor Devices with Enhanced Field and Environmental Responses for Novel Applications. MRS Bulletin, 2008, 33, 690-696.	1.7	50

#	Article	IF	CITATIONS
37	Dichlorinated Dithienyletheneâ€Based Copolymers for Airâ€5table nâ€Type Conductivity and Thermoelectricity. Advanced Functional Materials, 2021, 31, 2005901.	7.8	50
38	Printable ammonia sensor based on organic field effect transistor. Organic Electronics, 2014, 15, 3221-3230.	1.4	47
39	Sensitive and Selective NO ₂ Sensing Based on Alkyl- and Alkylthio-Thiophene Polymer Conductance and Conductance Ratio Changes from Differential Chemical Doping. ACS Applied Materials & Interfaces, 2017, 9, 20501-20507.	4.0	46
40	Sequence-dependent mechanical, photophysical and electrical properties of pi-conjugated peptide hydrogelators. Journal of Materials Chemistry C, 2015, 3, 6505-6514.	2.7	43
41	A Cytop Insulating Tunneling Layer for Efficient Perovskite Solar Cells. Small Methods, 2017, 1, 1700244.	4.6	42
42	Ultrasensitive Detection of Electrolyte Leakage from Lithium-Ion Batteries by Ionically Conductive Metal-Organic Frameworks. Matter, 2020, 3, 904-919.	5.0	42
43	Threshold voltage shifting for memory and tuning in printed transistor circuits. Materials Science and Engineering Reports, 2011, 72, 49-80.	14.8	40
44	Correlations between SFG Spectra and Electrical Properties of Organic Field Effect Transistors. Journal of Physical Chemistry C, 2007, 111, 13250-13255.	1.5	39
45	Enhanced Molecular Doping for High Conductivity in Polymers with Volume Freed for Dopants. Macromolecules, 2019, 52, 9804-9812.	2.2	37
46	Digital-Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors. Advanced Functional Materials, 2011, 21, 4314-4319.	7.8	34
47	Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids. Applied Physics Letters, 2013, 102, .	1.5	34
48	Dopantâ€Dependent Increase in Seebeck Coefficient and Electrical Conductivity in Blended Polymers with Offset Carrier Energies. Advanced Electronic Materials, 2019, 5, 1800618.	2.6	34
49	Ethylene Detection Based on Organic Field-Effect Transistors With Porogen and Palladium Particle Receptor Enhancements. ACS Applied Materials & Interfaces, 2017, 9, 1173-1177.	4.0	32
50	Hybrid of P3HT and ZnO@GO nanostructured particles for increased NO ₂ sensing response. Journal of Materials Chemistry C, 2017, 5, 2160-2166.	2.7	32
51	Sensitive and selective pentacene-guanine field-effect transistor sensing of nitrogen dioxide and interferent vapor analytes. Sensors and Actuators B: Chemical, 2018, 254, 940-948.	4.0	30
52	Design and Synthesis of Air-Stable p-Channel-Conjugated Polymers for High Signal-to-Drift Nitrogen Dioxide and Ammonia Sensing. ACS Applied Materials & Interfaces, 2020, 12, 21974-21984.	4.0	29
53	Molecular Switching via Multiplicity-Exclusive <i>E</i> / <i>Z</i> Photoisomerization Pathways. Journal of the American Chemical Society, 2015, 137, 10841-10850.	6.6	28
54	Using Preformed Meisenheimer Complexes as Dopants for nâ€Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. Advanced Functional Materials, 2021, 31, 2010567.	7.8	28

#	Article	IF	CITATIONS
55	Effects of carrier mobility and morphology in organic semiconductor spin valves. Journal of Applied Physics, 2009, 105, .	1.1	26
56	Influence of Bioreceptor Layer Structure on Myelin Basic Protein Detection using Organic Field Effect Transistorâ€Based Biosensors. Advanced Functional Materials, 2018, 28, 1802605.	7.8	25
57	X-ray and neutron reflectivity and electronic properties of PCBM-poly(bromo)styrene blends and bilayers with poly(3-hexylthiophene). Journal of Materials Chemistry, 2012, 22, 4364-4370.	6.7	24
58	ZT > 0.1 Electron arrying Polymer Thermoelectric Composites with In Situ SnCl ₂ Microstructure Growth. Advanced Science, 2015, 2, 1500015.	5.6	22
59	A Humid-Air-Operable, NO ₂ -Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sensors, 2019, 4, 3240-3247.	4.0	22
60	Tetrathiafulvalene (TTF)-Functionalized Thiophene Copolymerized with 3,3‴-Didodecylquaterthiophene: Synthesis, TTF Trapping Activity, and Response to Trinitrotoluene. Macromolecules, 2013, 46, 708-717.	2.2	20
61	Direct Detection of Dilute Solid Chemicals with Responsive Lateral Organic Diodes. Journal of the American Chemical Society, 2017, 139, 12366-12369.	6.6	20
62	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matching for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie - International Edition, 2021, 60, 27212-27219.	7.2	20
63	Electrical "Turn-On―Response of Poly(3,3‴-didodecylquaterthiophene) and Electron Donor Blend Transistors to 2,4,6-Trinitrotoluene. Chemistry of Materials, 2012, 24, 2621-2623.	3.2	19
64	Metal organic chemical vapor deposition of ZnO from βâ€ketoiminates. Applied Organometallic Chemistry, 2012, 26, 267-272.	1.7	19
65	Unusually Conductive Organic–Inorganic Hybrid Nanostructures Derived from Bio-Inspired Mineralization of Peptide/Pi-Electron Assemblies. ACS Nano, 2020, 14, 1846-1855.	7.3	19
66	Effect of side chain length on film structure and electron mobility of core-unsubstituted pyromellitic diimides and enhanced mobility of the dibrominated core using the optimized side chain. Journal of Materials Chemistry C, 2015, 3, 3029-3037.	2.7	18
67	Solid-Phase Synthesis of Self-Assembling Multivalent π-Conjugated Peptides. ACS Omega, 2017, 2, 409-419.	1.6	18
68	Synthesis, Fabrication, and Heterostructure of Charged, Substituted Polystyrene Multilayer Dielectrics and Their Effects in Pentacene Transistors. Macromolecules, 2016, 49, 3478-3489.	2.2	17
69	Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers. Materials Horizons, 2020, 7, 1358-1371.	6.4	17
70	Analytical Platform To Characterize Dopant Solution Concentrations, Charge Carrier Densities in Films and Interfaces, and Physical Diffusion in Polymers Utilizing Remote Field-Effect Transistors. Journal of the American Chemical Society, 2019, 141, 4861-4869.	6.6	16
71	Templated Crosslinked Imidazolyl Acrylate for Electronic Detection of Nitroaromatic Explosives. Advanced Functional Materials, 2013, 23, 91-99.	7.8	14
72	Conductivity and power factor enhancement of n-type semiconducting polymers using sodium silica gel dopant. APL Materials, 2017, 5, .	2.2	14

#	Article	IF	CITATIONS
73	High Signalâ€ŧoâ€Noise Chemical Sensors Based on Compensated Organic Transistor Circuits. Advanced Materials Technologies, 2019, 4, 1900410.	3.0	14
74	Syntheses, Solid State Structures, and Electrical Properties of Oxadiazole-Based Oligomers with Perfluorinated Endgroups. Journal of Physical Chemistry C, 2008, 112, 7939-7945.	1.5	13
75	Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers. Applied Physics Letters, 2017, 111, .	1.5	13
76	A flexible organic inverter made from printable materials for synergistic ammonia sensing. Journal of Materials Chemistry C, 2017, 5, 6506-6511.	2.7	13
77	A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for nâ€Type Allâ€Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. Advanced Materials, 2022, 34, e2201062.	11.1	13
78	Molecular ordering in bis(phenylenyl)bithiophenes. Journal of Materials Chemistry, 2007, 17, 3427.	6.7	12
79	Highly Contrasting Static Charging and Bias Stress Effects in Pentacene Transistors with Polystyrene Heterostructures Incorporating Oxidizable <i>N</i> , <i>N</i> ′-Bis(4-methoxyphenyl)aniline Side Chains as Gate Dielectrics. Macromolecules, 2018, 51, 6011-6020.	2.2	11
80	Mobility enhancement of organic field-effect transistor based on guanine trap-neutralizing layer. Applied Physics Letters, 2016, 109, .	1.5	10
81	Antigen sensing via nanobody-coated transistors. Nature Biomedical Engineering, 2021, 5, 639-640.	11.6	10
82	Heteroaromatic variation in amorphous 1,6-methano[10]annulene-based charge-transporting organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 7851.	2.7	8
83	Trap-dominated nitrogen dioxide and ammonia responses of air-stable p-channel conjugated polymers from detailed bias stress analysis. Journal of Materials Chemistry C, 2021, 9, 3531-3545.	2.7	8
84	Nanoscale Bioreceptor Layers Comprising Carboxylated Polythiophene for Organic Electrochemical Transistor-Based Biosensors. ACS Applied Nano Materials, 2021, 4, 13459-13468.	2.4	8
85	Computational discovery of high charge mobility self-assembling π-conjugated peptides. Molecular Systems Design and Engineering, 2022, 7, 447-459.	1.7	8
86	Conductive Polymers: Synergistically Improved Molecular Doping and Carrier Mobility by Copolymerization of Donor–Acceptor and Donor–Donor Building Blocks for Thermoelectric Application (Adv. Funct. Mater. 40/2020). Advanced Functional Materials, 2020, 30, 2070270.	7.8	7
87	Voltage dependent displacement current as a tool to measure the vacuum level shift caused by self-assembled monolayers on aluminum oxide. Applied Physics Letters, 2013, 103, .	1.5	6
88	Effects of trifluoromethyl substituents on interfacial and bulk polarization of polystyrene gate dielectrics. Applied Physics Letters, 2019, 114, .	1.5	6
89	Spectroscopic Studies of Charge-Transfer Character and Photoresponses of F ₄ TCNQ-Based Donor–Acceptor Complexes. Journal of Physical Chemistry C, 2020, 124, 9191-9202.	1.5	6
90	Oxygen-bearing functionalities enhancing NO ₂ , NH ₃ , and acetone electronic response and response variation by polythiophenes in organic field-effect transistor sensors. Journal of Materials Chemistry C, 2022, 10, 2149-2162.	2.7	6

#	Article	IF	CITATIONS
91	The combined influence of polythiophene side chains and electrolyte anions on organic electrochemical transistors. Electrochemical Science Advances, 2022, 2, .	1.2	6
92	Inexpensive, Versatile, and Robust USB-Driven Sensor Platform. , 2017, 1, 1-4.		5
93	Static Polystyrene Gate Charge Density Modulation of Dinaphthothienothiophene with Tetrafluorotetracyanoquinodimethane Layer Doping: Evidence from Conductivity and Seebeck Coefficient Measurements and Correlations. ACS Applied Electronic Materials, 2019, 1, 2708-2715.	2.0	5
94	Carboxylic Acidâ€Functionalized Conjugated Polymer Promoting Diminished Electronic Drift and Amplified Proton Sensitivity of Remote Gates Compared to Nonpolar Surfaces in Aqueous Media. Advanced Electronic Materials, 2020, 6, 1901073.	2.6	5
95	Charge Trapping in Polymer Electrets with Highly Dilute Blended Arylamine Donors. ACS Applied Electronic Materials, 2021, 3, 1656-1662.	2.0	5
96	Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors. MRS Communications, 2013, 3, 97-100.	0.8	4
97	Suppression of Ionic Doping by Molecular Dopants in Conjugated Polymers for Improving Specificity and Sensitivity in Biosensing Applications. ACS Applied Materials & Interfaces, 2020, 12, 45036-45044.	4.0	4
98	Simulation of two-transistor parallel and series circuits for gas sensing validated by experimental data. Journal of Computational Electronics, 2021, 20, 626-634.	1.3	4
99	A chemical kinetics perspective on thermoelectric transport. Applied Physics Letters, 2021, 119, 060503.	1.5	4
100	Stabilization and Specification in Polymer Field-Effect Transistor Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 15861-15870.	4.0	4
101	A Dichlorinated Dithienylethene-Diketopyrrolopyrrole-Based Copolymer with Pronounced P–N Crossover: Evidence for Anionic Seebeck Contribution. , 2022, 4, 1139-1145.		4
102	Impedance spectroscopic detection of binding and reactions in acid-labile dielectric polymers for biosensor applications. Journal of Materials Chemistry B, 2018, 6, 2972-2981.	2.9	3
103	Contributions to composite conductivity and Seebeck coefficient in commercial Bi2Te3—Conjugated polymer composites. Journal of Applied Physics, 2019, 125, .	1.1	3
104	Maximized Hole Trapping in a Polystyrene Transistor Dielectric from a Highly Branched Iminobis(aminoarene) Side Chain. ACS Applied Materials & Interfaces, 2021, 13, 34584-34596.	4.0	3
105	Organic Semiconductor-based Chemical Sensors. , 2006, , 411-421.		2
106	Silicon-on-insulator (SOI) integration for organic field effect transistor (OFET) based circuits. , 2011, ,		2
107	Device Isolation in Hybrid Field-Effect Transistors by Semiconductor Micropatterning Using Picosecond Lasers. Physical Review Applied, 2014, 2, .	1.5	2
108	Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics. Scientific Reports, 2017, 7, 5728.	1.6	2

#	Article	IF	CITATIONS
109	Vapor sensing using organic, polymer, and nanomaterial field-effect transistors. , 2019, , 785-815.		2
110	Evidence of Preformed Lewis Acid–Base and Wheland-Type Complexes Acting as Dopants for p-Type Conjugated Polymers. ACS Applied Polymer Materials, 2022, 4, 2065-2080.	2.0	2
111	The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: Antiâ€human IgG and human IgG interaction detection based on organic electrochemical transistors. Electrochemical Science Advances, 2022, 2, .	1.2	2
112	Organic field-effect transistor sensors with dual responses to dinitrotoluene. , 2009, , .		1
113	Reduced-temperature solution-processed transparent oxide low-voltage-operable field-effect transistors. MRS Communications, 2015, 5, 605-611.	0.8	1
114	Effect of Nonionic Conjugated Matrix Polymer and P-Dopant on Carbon Nanotube Aggregation and Thermoelectric Properties. MRS Advances, 2018, 3, 3483-3487.	0.5	1
115	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchin for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie, 2021, 133, 27418-27425.	g 1.6	1
116	Material and circuit design for organic electronic vapor sensors and biosensors. , 2019, , .		1
117	Structural Characterization of a Functionalized Organic Semiconductor. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
118	Bottom contact organic transistor based on air-stable n-type F15-NTCDI. , 2007, , .		0
119	Solution-deposited ZnO-organic diodes with high current density and high frequency rectification under ambient conditions. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	0
120	Functionalized organic semiconductor-based field-effect transistors for phosphonate vapor detection. , 2007, , .		0
121	Interfacial and Nanostructural Enhancements in Organic Semiconductor Sensors and Diodes. , 2008, ,		0
122	High photovoltaic performance of ladder-type oligo-p-phenylene containing copolymers with high open-circuit voltages. , 2009, , .		0
123	Improved photostability of disperse red 1 infused in a nanoporous silicate monolith. , 2009, , .		0
124	Improved morphology and bias stress study of a naphthalenetetracarboxylic diimide bottom contact field effect transistor. , 2009, , .		0
125	CMOS inverters for ammonia/amine sensors. , 2010, , .		0
126	Organic diode implementations in configurable architectures and temperature sensors. , 2013, , .	_	0

#	Article	IF	CITATIONS
127	Dielectric tuning strategies for flexible display backplane transistors. , 2013, , .		Ο
128	Injection and Interface-Dominated Nonlinear Resistors from Tin-Carbon Nanotube Junctions. MRS Advances, 2019, 4, 185-189.	0.5	0
129	(Plenary) Conjugated Polymers for Selective Chemical Sensing and Energy Conversion. ECS Meeting Abstracts, 2018, , .	0.0	Ο
130	(Invited) Thermoelectric Parameters in Blends of Polymers with Slightly Offset Carrier Energies. ECS Meeting Abstracts, 2019, , .	0.0	0
131	(Invited) Organic Semiconductor, Receptor Material and Circuit Design for Organic Electronic Vapor Sensors and Biosensors. ECS Meeting Abstracts, 2020, MA2020-01, 2427-2427.	0.0	Ο