Stéphanie Ouvrard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A metaâ€analysis of carbon content and stocks in <scp>Technosols</scp> and identification of the main governing factors. European Journal of Soil Science, 2022, 73, .	1.8	19
2	Assessment for combined phytoremediation and biomass production on a moderately contaminated soil. Environmental Science and Pollution Research, 2022, , 1.	2.7	1
3	Open-Source Script for Design and 3D Printing of Porous Structures for Soil Science. Technologies, 2021, 9, 67.	3.0	1
4	3D printing: An emerging opportunity for soil science. Geoderma, 2020, 378, 114588.	2.3	15
5	In situ long-term modeling of phenanthrene dynamics in an aged contaminated soil using the VSOIL platform. Science of the Total Environment, 2018, 619-620, 239-248.	3.9	4
6	Modelling the fate of PAH added with composts in amended soil according to the origin of the exogenous organic matter. Science of the Total Environment, 2018, 616-617, 658-668.	3.9	8
7	How lysimetric monitoring of Technosols can contribute to understand the temporal dynamics of the soil porosity. Geoderma, 2017, 296, 60-68.	2.3	7
8	Roots alterations in presence of phenanthrene may limit co-remediation implementation with Noccaea caerulescens. Environmental Science and Pollution Research, 2017, 24, 19653-19661.	2.7	3
9	Using a Bayesian approach to improve and calibrate a dynamic model of polycyclic aromatic hydrocarbons degradation in an industrial contaminated soil. Environmental Pollution, 2016, 215, 27-37.	3.7	11
10	Modelling pedogenesis of Technosols. Geoderma, 2016, 262, 199-212.	2.3	65
11	Effect and localization of phenanthrene in maize roots. Chemosphere, 2016, 149, 130-136.	4.2	28
12	Climatic influence on mobility of organic pollutants in Technosols from contrasted industrial activities. Journal of Soils and Sediments, 2016, 16, 1306-1315.	1.5	6
13	Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environmental Science and Pollution Research, 2015, 22, 13724-13738.	2.7	49
14	Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere, 2015, 124, 110-115.	4.2	32
15	Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil. Science of the Total Environment, 2014, 497-498, 345-352.	3.9	12
16	Desorption kinetics of PAHs from aged industrial soils for availability assessment. Science of the Total Environment, 2014, 470-471, 639-645.	3.9	99
17	PAH Phytoremediation: Rhizodegradation or Rhizoattenuation?. International Journal of Phytoremediation, 2014, 16, 46-61.	1.7	36
18	Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination. Biodegradation, 2013, 24, 539-548.	1.5	21

#	Article	IF	CITATIONS
19	Protective role of fine silts for PAH in a former industrial soil. Environmental Pollution, 2013, 179, 81-87.	3.7	27
20	Contaminated soils salinity, a threat for phytoextraction?. Chemosphere, 2013, 91, 269-274.	4.2	12
21	Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation. Environmental Pollution, 2013, 177, 98-105.	3.7	60
22	Predictability of the Evolution of the Soil Structure using Water Flow Modeling for a Constructed Technosol. Vadose Zone Journal, 2012, 11, .	1.3	19
23	In Situ Assessment of Phytotechnologies for Multicontaminated Soil Management. International Journal of Phytoremediation, 2011, 13, 245-263.	1.7	64
24	Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments, 2010, 10, 1246-1254.	1.5	121
25	Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecological Engineering, 2010, 36, 391-395.	1.6	45
26	Technosol genesis: identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. Journal of Soils and Sediments, 2009, 9, 537-546.	1.5	37
27	Soil construction: A step for ecological reclamation of derelict lands. Journal of Soils and Sediments, 2008, 8, 130-136.	1.5	121
28	Décontamination de sols pollués par les hydrocarbures aromatiques polycycliques par biodégradation en présence de substrats organiques supplémentaires. Journal of Environmental Engineering and Science, 2008, 7, 467-479.	0.3	6
29	Root Exudates Impact on Phenanthrene Availability. Water, Air and Soil Pollution, 2006, 6, 343-352.	0.8	24
30	Multicomponent anion exchange with a resin having weakly and strongly basic groups. Chemical Engineering Science, 2005, 60, 1849-1858.	1.9	11
31	Natural manganese oxide: Combined analytical approach for solid characterization and arsenic retention. Geochimica Et Cosmochimica Acta, 2005, 69, 2715-2724.	1.6	94
32	Reactive Behavior of Natural Manganese Oxides toward the Adsorption of Phosphate and Arsenate. Industrial & Engineering Chemistry Research, 2002, 41, 2785-2791.	1.8	62
33	Diffusion-Controlled Adsorption of Arsenate on a Natural Manganese Oxide. Industrial & Engineering Chemistry Research, 2002, 41, 6194-6199.	1.8	39