Claudia Ciniglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/392292/publications.pdf

Version: 2024-02-01

516215 414034 1,911 31 16 32 citations g-index h-index papers 34 34 34 2643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioremoval of Yttrium (III), Cerium (III), Europium (III), and Terbium (III) from Single and Quaternary Aqueous Solutions Using the Extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta). Plants, 2022, 11, 1376.	1.6	13
2	Cultivation of the Acidophilic Microalgae Galdieria phlegrea with Wastewater: Process Yields. International Journal of Environmental Research and Public Health, 2021, 18, 2291.	1.2	12
3	Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics, 2021, 10, 746.	1.5	30
4	Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of "POWER―System, and Future Prospects. Plants, 2021, 10, 2343.	1.6	19
5	Cyanidiophyceae (Rhodophyta) Tolerance to Precious Metals: Metabolic Response to Palladium and Gold. Plants, 2021, 10, 2367.	1.6	12
6	Potential causes and consequences of rapid mitochondrial genome evolution in thermoacidophilic Galdieria (Rhodophyta). BMC Evolutionary Biology, 2020, 20, 112.	3.2	13
7	Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source. Plants, 2020, 9, 232.	1.6	11
8	Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy. Phycological Research, 2019, 67, 311-319.	0.8	8
9	A Spotlight on Rad52 in Cyanidiophytina (Rhodophyta): A Relic in Algal Heritage. Plants, 2019, 8, 46.	1.6	6
10	Heterotrophic components of biofilms on wood artefacts. Journal of Wood Science, 2018, 64, 417-426.	0.9	7
11	Different characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea. Algal Research, 2018, 31, 406-412.	2.4	36
12	Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey. Extremophiles, 2018, 22, 713-723.	0.9	20
13	Genetic structure of Galdieria populations from Iceland. Polar Biology, 2018, 41, 1681-1691.	0.5	15
14	Cyanidium from caves: a reinstatement of Cyanidium chilense Schwabe (Cyanidiophytina, Rhodophyta). Phytotaxa, 2017, 295, 86.	0.1	5
15	Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga <i>Galdieria phlegrea</i> (Cyanidiophyceae). Plant and Cell Physiology, 2016, 57, 1890-1898.	1.5	29
16	Ruta graveolens L. Induces Death of Glioblastoma Cells and Neural Progenitors, but Not of Neurons, via ERK 1/2 and AKT Activation. PLoS ONE, 2015, 10, e0118864.	1.1	37
17	Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. Ecotoxicology, 2015, 24, 926-937.	1.1	21
18	Cyanidiophyceae in Iceland: plastid <i>rbc</i> L gene elucidates origin and dispersal of extremophilic <i>Galdieria sulphuraria</i> and <i>Galdieria</i> (Galdieriaceae, Rhodophyta). Phycologia, 2014, 53, 542-551.	0.6	35

#	Article	IF	CITATION
19	Cell-programmed death induced by walnut husk washing waters in three horticultural crops. Environmental Science and Pollution Research, 2014, 21, 3491-3502.	2.7	3
20	DNA integrity of onion root cells under catechol influence. Environmental Science and Pollution Research, 2013, 20, 4859-4871.	2.7	10
21	Effects of walnut husk washing waters and their phenolic constituents on horticultural species. Environmental Science and Pollution Research, 2012, 19, 3299-3306.	2.7	15
22	Comet Assay to Assess the Genotoxicity of Persian Walnut (Juglans regia L.) Husks with Statistical Evaluation. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 166-171.	1.3	10
23	A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archeological district. Journal of Cave and Karst Studies, 2012, 74, 243-250.	0.3	43
24	Species Composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and Description of Galdieria Phlegrea SP. NOV. Cellular Origin and Life in Extreme Habitats, 2007, , 487-502.	0.3	27
25	Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology, 2006, 6, 78.	3.2	46
26	Application of methods for assessing the geno- and cytotoxicity of Triclosan to C. ehrenbergii. Journal of Hazardous Materials, 2005, 122, 227-232.	6.5	73
27	Chlamydomonas pitschmannii Ettl, a Little Known Species from Thermoacidic Environments. Protist, 2005, 156, 287-302.	0.6	32
28	Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 2004, 13, 1827-1838.	2.0	167
29	Antibiotics in the Environment:Â Occurrence in Italian STPs, Fate, and Preliminary Assessment on Algal Toxicity of Amoxicillin. Environmental Science & Eamp; Technology, 2004, 38, 6832-6838.	4.6	270
30	A Molecular Timeline for the Origin of Photosynthetic Eukaryotes. Molecular Biology and Evolution, 2004, 21, 809-818.	3.5	825
31	Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH	3.2	48