Liqiang Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3922813/publications.pdf

Version: 2024-02-01

		22132	34964
185	11,186	59	98
papers	citations	h-index	g-index
186	186	186	11421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chemical Society Reviews, 2013, 42, 9509.	18.7	564
2	Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2Nanoparticles and Their Relationships. Journal of Physical Chemistry B, 2006, 110, 17860-17865.	1.2	397
3	The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science, 2001, 180, 308-314.	3.1	317
4	Preparation and Characterization of Stable Biphase TiO ₂ Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity. Journal of Physical Chemistry C, 2008, 112, 3083-3089.	1.5	288
5	Longâ€Lived, Visibleâ€Lightâ€Excited Charge Carriers of TiO ₂ /BiVO ₄ Nanocomposites and their Unexpected Photoactivity for Water Splitting. Advanced Energy Materials, 2014, 4, 1300995.	10.2	268
6	Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Applied Catalysis B: Environmental, 2017, 201, 486-494.	10.8	254
7	Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Applied Catalysis B: Environmental, 2016, 180, 219-226.	10.8	223
8	Exceptional Visibleâ€Lightâ€Driven Cocatalystâ€Free Photocatalytic Activity of gâ€C ₃ N ₄ by Well Designed Nanocomposites with Plasmonic Au and SnO ₂ . Advanced Energy Materials, 2016, 6, 1601190.	10.2	207
9	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	10.2	200
10	Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. Journal of Hazardous Materials, 2018, 342, 715-723.	6.5	190
11	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 10873-10878.	7.2	168
12	The preparation and characterization of ZnO ultrafine particles. Materials Science & Discretized in Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 332, 356-361.	2.6	166
13	Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Materials Research Bulletin, 2007, 42, 203-212.	2.7	162
14	Synthesis of Large Surfaceâ€Area gâ€C ₃ N ₄ Comodified with MnO <i>_x</i> and Auâ€TiO ₂ as Efficient Visibleâ€Light Photocatalysts for Fuel Production. Advanced Energy Materials, 2018, 8, 1701580.	10.2	157
15	Exceptional photocatalytic activities for CO2 conversion on Al O bridged g-C3N4/α-Fe2O3 z-scheme nanocomposites and mechanism insight with isotopesZ. Applied Catalysis B: Environmental, 2018, 221, 459-466.	10.8	154
16	Exceptional Visible-Light Activities of TiO ₂ -Coupled N-Doped Porous Perovskite LaFeO ₃ for 2,4-Dichlorophenol Decomposition and CO ₂ Conversion. Environmental Science & Decomposition and CO ₂ Conversion.	4.6	146
17	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 2012, 5, 6552.	15.6	143
18	Exceptional Photocatalytic Activity of 001-Facet-Exposed TiO ₂ Mainly Depending on Enhanced Adsorbed Oxygen by Residual Hydrogen Fluoride. ACS Catalysis, 2013, 3, 1378-1385.	5.5	137

#	Article	IF	CITATIONS
19	Enhanced Cocatalyst-Free Visible-Light Activities for Photocatalytic Fuel Production of g-C ₃ N ₄ by Trapping Holes and Transferring Electrons. Journal of Physical Chemistry C, 2016, 120, 98-107.	1.5	135
20	Enhanced Visible Activities of \hat{l} ±-Fe ₂ O ₃ by Coupling N-Doped Graphene and Mechanism Insight. ACS Catalysis, 2014, 4, 990-998.	5.5	132
21	Energy Platform for Directed Charge Transfer in the Cascade Zâ€Scheme Heterojunction: CO ₂ Photoreduction without a Cocatalyst. Angewandte Chemie - International Edition, 2021, 60, 20906-20914.	7.2	132
22	Construction of Sixâ€Oxygenâ€Coordinated Single Ni Sites on gâ€C ₃ N ₄ with Boronâ€Oxo Species for Photocatalytic Waterâ€Activationâ€Induced CO ₂ Reduction. Advanced Materials, 2021, 33, e2105482.	11.1	128
23	Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. Journal of Hazardous Materials, 2009, 172, 1168-1174.	6.5	126
24	Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogen-induced surface polarization and 2,4-dichlorophenol decomposition mechanism. Applied Catalysis B: Environmental, 2017, 218, 60-67.	10.8	123
25	Mesoporous SiO ₂ -Modified Nanocrystalline TiO ₂ with High Anatase Thermal Stability and Large Surface Area as Efficient Photocatalyst. Journal of Physical Chemistry C, 2009, 113, 1006-1013.	1.5	117
26	Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Applied Catalysis B: Environmental, 2018, 231, 23-33.	10.8	113
27	Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. Journal of Nanoparticle Research, 2010, 12, 967-974.	0.8	112
28	Effect of Ni doping in Ni _x Mn _{1â^'x} Ti ₁₀ (x = 0.1â€"0.5) on activity and SO ₂ resistance for NH ₃ -SCR of NO studied with in situ DRIFTS. Catalysis Science and Technology, 2017, 7, 3243-3257.	2.1	111
29	Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Applied Catalysis B: Environmental, 2017, 203, 355-362.	10.8	107
30	Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Solar Energy Materials and Solar Cells, 2008, 92, 1030-1036.	3.0	104
31	Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2,4-dichlorophenol degradation and mechanisms. Applied Catalysis B: Environmental, 2019, 243, 57-65.	10.8	100
32	Ultrathin Phosphateâ€Modulated Co Phthalocyanine/gâ€C ₃ N ₄ Heterojunction Photocatalysts with Single Coâ€"N ₄ (II) Sites for Efficient O ₂ Activation. Advanced Science, 2020, 7, 2001543.	5.6	99
33	Review of strategies for the fabrication of heterojunctional nanocomposites as efficient visible-light catalysts by modulating excited electrons with appropriate thermodynamic energy. Journal of Materials Chemistry A, 2019, 7, 10879-10897.	5.2	98
34	Activity and SO ₂ resistance of amorphous Ce _a TiO _x catalysts for the selective catalytic reduction of NO with NH ₃ : in situ DRIFT studies. Catalysis Science and Technology, 2016, 6, 7151-7162.	2.1	98
35	Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports, 2014, 4, 6180.	1.6	95
36	Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Applied Catalysis B: Environmental, 2019, 244, 641-649.	10.8	94

#	Article	IF	CITATIONS
37	Recent advances in BiOBr-based photocatalysts for environmental remediation. Chinese Chemical Letters, 2021, 32, 3265-3276.	4.8	92
38	Photogenerated electron modulation to dominantly induce efficient 2,4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification. Applied Catalysis B: Environmental, 2017, 209, 320-328.	10.8	91
39	Phosphate-modified graphitic C3N4 as efficient photocatalyst for degrading colorless pollutants by promoting O2 adsorption. Chemical Communications, 2014, 50, 1999.	2.2	89
40	Synthesis of nanocrystalline anatase TiO2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B. Journal of Hazardous Materials, 2010, 176, 139-145.	6.5	87
41	One-step synthesis of mesoporous Al ₂ O ₃ â€"In ₂ O ₃ nanofibres with remarkable gas-sensing performance to NO _x at room temperature. Journal of Materials Chemistry A, 2014, 2, 949-956.	5.2	84
42	Improved photoactivity of TiO ₂ â€"Fe ₂ O ₃ nanocomposites for visible-light water splitting after phosphate bridging and its mechanism. Physical Chemistry Chemical Physics, 2015, 17, 5043-5050.	1.3	84
43	Efficiently photocatalytic conversion of CO2 on ultrathin metal phthalocyanine/g-C3N4 heterojunctions by promoting charge transfer and CO2 activation. Applied Catalysis B: Environmental, 2020, 277, 119199.	10.8	84
44	Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118849.	10.8	83
45	Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 229, 1-7.	10.8	82
46	Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Science in China Series B: Chemistry, 2005, 48, 25-30.	0.8	79
47	Effective Visible-Excited Charge Separation in Silicate-Bridged ZnO/BiVO ₄ Nanocomposite and Its Contribution to Enhanced Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18550-18557.	4.0	79
48	Facile Synthesis of Surface-Modified Nanosized α-Fe ₂ O ₃ as Efficient Visible Photocatalysts and Mechanism Insight. Journal of Physical Chemistry C, 2013, 117, 1358-1365.	1.5	77
49	Selective Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS Catalysis, 2016, 6, 3580-3588.	5.5	76
50	Synthesis of TiO2/g-C3N4 nanocomposites as efficient photocatalysts dependent on the enhanced photogenerated charge separation. Materials Research Bulletin, 2015, 70, 494-499.	2.7	75
51	Highly mesoporous hierarchical nickel and cobalt double hydroxide composite: fabrication, characterization and ultrafast NOx gas sensors at room temperature. Journal of Materials Chemistry A, 2014, 2, 4961.	5.2	74
52	Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting. Journal of Alloys and Compounds, 2015, 631, 120-124.	2.8	74
53	Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen. Physical Chemistry Chemical Physics, 2012, 14, 8530.	1.3	73
54	Dimension-matched plasmonic Au/TiO ₂ /BiVO ₄ nanocomposites as efficient wide-visible-light photocatalysts to convert CO ₂ and mechanistic insights. Journal of Materials Chemistry A, 2018, 6, 11838-11845.	5.2	72

#	Article	IF	Citations
55	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O ₂ . ACS Applied Materials & Interfaces, 2015, 7, 22727-22740.	4.0	68
56	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion., 2020, 2, 1484-1494.		65
57	Synthesis of activated carbon-supported TiO2-based nano-photocatalysts with well recycling for efficiently degrading high-concentration pollutants. Catalysis Today, 2019, 335, 557-564.	2.2	64
58	The synthesis of interface-modulated ultrathin Ni(<scp>ii</scp>) MOF/g-C ₃ N ₄ heterojunctions as efficient photocatalysts for CO ₂ reduction. Nanoscale, 2020, 12, 10010-10018.	2.8	64
59	Synthesis of High-Activity TiO ₂ -Based Photocatalysts by Compounding a Small Amount of Porous Nanosized LaFeO ₃ and the Activity-Enhanced Mechanisms. Journal of Physical Chemistry C, 2011, 115, 12375-12380.	1.5	62
60	Facile fabrication of efficient AgBr–TiO2 nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism. Journal of Hazardous Materials, 2012, 243, 169-178.	6.5	62
61	Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity. Applied Surface Science, 2009, 256, 657-663.	3.1	59
62	Acceleration effects of phosphate modification on the decay dynamics of photo-generated electrons of TiO2 and its photocatalytic activity. Chemical Communications, 2012, 48, 10775.	2.2	58
63	Synthesis of large surface area nano-sized BiVO4 by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity. Journal of Solid State Chemistry, 2011, 184, 3050-3054.	1.4	57
64	Enhancement Effects of Cobalt Phosphate Modification on Activity for Photoelectrochemical Water Oxidation of TiO ₂ and Mechanism Insights. ACS Applied Materials & Interfaces, 2013, 5, 4046-4052.	4.0	56
65	Soot Combustion over Nanostructured Ceria with Different Morphologies. Scientific Reports, 2016, 6, 29062.	1.6	56
66	A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Scientific Reports, 2017, 7, 6347.	1.6	56
67	Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1331-1340.	6.9	55
68	Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. Journal of Hazardous Materials, 2008, 160, 208-212.	6.5	54
69	Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Materials Letters, 2008, 62, 3503-3505.	1.3	53
70	Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C3N4 for selective photocatalytic oxidation of methyl-phenyl-sulfide with O2. Chinese Chemical Letters, 2020, 31, 2784-2788.	4.8	52
71	Exceptional visible-light activities of g-C3N4 nanosheets dependent on the unexpected synergistic effects of prolonging charge lifetime and catalyzing H2 evolution with H2O. Applied Catalysis B: Environmental, 2018, 237, 50-58.	10.8	51
72	Surface co-modification with highly-dispersed Mn & Description of g-C3N4 nanosheets for efficiently photocatalytic reduction of CO2 to CO and CH4. Applied Surface Science, 2019, 492, 125-134.	3.1	51

#	Article	IF	Citations
73	Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Metals, 2022, 41, 155-165.	3.6	50
74	Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature. Journal of Materials Chemistry A, 2014, 2, 4558-4565.	5.2	49
75	Nitrate removal from low C/N wastewater at low temperature by immobilized Pseudomonas sp. Y39-6 with versatile nitrate metabolism pathways. Bioresource Technology, 2021, 326, 124794.	4.8	49
76	Efficient wide-spectrum photocatalytic overall water splitting over ultrathin molecular nickel phthalocyanine/BiVO4 Z-scheme heterojunctions without noble metals. Applied Catalysis B: Environmental, 2021, 295, 120260.	10.8	49
77	Synthesis of Efficient Nanosized Rutile TiO ₂ and Its Main Factors Determining Its Photodegradation Activity: Roles of Residual Chloride and Adsorbed Oxygen. Journal of Physical Chemistry C, 2012, 116, 17094-17100.	1.5	47
78	Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2,4-dichlorophenol degradation. Materials Research Bulletin, 2020, 127, 110857.	2.7	47
79	Enhanced charge separation of rutile TiO ₂ nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO ₂ to fuels. Chemical Communications, 2016, 52, 5027-5029.	2.2	45
80	Synthesis of TiO2/g-C3N4 nanocomposites with phosphate–oxygen functional bridges for improved photocatalytic activity. Chinese Journal of Catalysis, 2017, 38, 1072-1078.	6.9	45
81	Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier. Biomaterials, 2020, 262, 120323.	5.7	45
82	Surface modification of nanocrystalline anatase with CTAB in the acidic condition and its effects on photocatalytic activity and preferential growth of TiO2. Applied Surface Science, 2010, 257, 151-156.	3.1	44
83	Long-lived photogenerated charge carriers of 001-facet-exposed TiO2 with enhanced thermal stability as an efficient photocatalyst. Applied Catalysis B: Environmental, 2014, 147, 29-34.	10.8	44
84	Prolonged lifetime and enhanced separation of photogenerated charges of nanosized \hat{l}_{\pm} -Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Research, 2017, 10, 2321-2331.	5.8	44
85	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie, 2019, 131, 10989-10994.	1.6	44
86	Synthesis of Si–O-Bridged <i>g</i> -C ₃ N ₄ /WO ₃ 2D-Heterojunctional Nanocomposites as Efficient Photocatalysts for Aerobic Alcohol Oxidation and Mechanism Insight. ACS Sustainable Chemistry and Engineering, 2019, 7, 9916-9927.	3.2	44
87	The promotion effect of surface negative electrostatic field on the photogenerated charge separation of BiVO ₄ and its contribution to the enhanced PEC water oxidation. Chemical Communications, 2015, 51, 2821-2823.	2.2	42
88	Efficiently photocatalytic degradation of monochlorophenol on in-situ fabricated BiPO4/ \hat{l}^2 -Bi2O3 heterojunction microspheres and O2-free hole-induced selective dechloridation conversion with H2 evolution. Applied Catalysis B: Environmental, 2020, 263, 118313.	10.8	42
89	Electrospinning of mesoporous p-type In ₂ O ₃ /TiO ₂ composite nanofibers for enhancing NO _x gas sensing properties at room temperature. CrystEngComm, 2014, 16, 9116-9124.	1.3	41
90	Synthesis of silicate-bridged ZnO/g-C ₃ N ₄ nanocomposites as efficient photocatalysts and its mechanism. RSC Advances, 2015, 5, 37275-37280.	1.7	40

#	Article	IF	CITATIONS
91	Improved visible-light photoactivities of porous LaFeO ₃ by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science and Technology, 2019, 9, 3149-3157.	2.1	40
92	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure. Small, 2021, 17, e2100296.	5.2	38
93	Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi ₂ O ₃ coupled with phosphate-bridged nano-SnO ₂ . Environmental Science: Nano, 2017, 4, 1147-1154.	2.2	37
94	Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2,4-dichlorophenol. Nano Research, 2018, 11, 1612-1624.	5.8	37
95	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	5.2	37
96	Catalytic Hydrogenation of Aqueous Nitrate over Pdâ^'Cu/ZrO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 8356-8363.	1.8	36
97	Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2,4-dichlorophenol degradation. Materials Research Bulletin, 2020, 122, 110676.	2.7	36
98	Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants. Nanomaterials, 2016, 6, 22.	1.9	35
99	Improved visible-light activities of nanocrystalline CdS by coupling with ultrafine NbN with lattice matching for hydrogen evolution. Sustainable Energy and Fuels, 2018, 2, 549-552.	2.5	35
100	ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution. Scientific Reports, 2015, 5, 8858.	1.6	34
101	Controlled Construction of Copper Phthalocyanine/αâ€Fe ₂ O ₃ Ultrathin Sâ€Scheme Heterojunctions for Efficient Photocatalytic CO ₂ Reduction under Wide Visibleâ€Light Irradiation. Small Science, 2021, 1, 2100050.	5.8	34
102	Promoted oxygen activation of layered micro-mesoporous structured titanium phosphate nanoplates by coupling nano-sized \hat{l} -MnO2 with surface pits for efficient photocatalytic oxidation of CO. Applied Catalysis B: Environmental, 2019, 254, 260-269.	10.8	33
103	Synthesis of nanosized Ag-modified 2D/2D hydroxylated g-C3N4/TS-1 Z-scheme nanocomposites for efficient photocatalytic CO2 reduction. Materials Research Bulletin, 2020, 130, 110926.	2.7	33
104	Enhanced visible photocatalytic activity of nanocrystalline \hat{l}_{\pm} -Fe2O3 by coupling phosphate-functionalized graphene. RSC Advances, 2013, 3, 7438.	1.7	31
105	Synthesis of MnNi–SAPO-34 by a one-pot hydrothermal method and its excellent performance for the selective catalytic reduction of NO by NH ₃ . Catalysis Science and Technology, 2017, 7, 4984-4995.	2.1	31
106	Synthesis of efficient N-containing TiO2photocatalysts with high anatase thermal stability and the effects of the nitrogen residue on the photoinduced charge separation. Physical Chemistry Chemical Physics, 2012, 14, 1352-1359.	1.3	30
107	Facile Synthesis of Vanadium Oxide/Reduced Graphene Oxide Composite Catalysts for Enhanced Hydroxylation of Benzene to Phenol. Catalysts, 2016, 6, 74.	1.6	30
108	Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Scientific Reports, 2016, 6, 21430.	1.6	30

#	Article	IF	CITATIONS
109	A novel composite anode via immobilizing of Ce-doped PbO2 on CoTiO3 for efficiently electrocatalytic degradation of dye. Journal of Colloid and Interface Science, 2022, 608, 2921-2931.	5. 0	30
110	Synthesis of Ni2+ cation modified TS-1 molecular sieve nanosheets as effective photocatalysts for alcohol oxidation and pollutant degradation. Chinese Journal of Catalysis, 2020, 41, 1589-1602.	6.9	29
111	The synthesis of porous ultrathin graphitic carbon nitride for the ultrasensitive fluorescence detection of 2,4,6-trinitrophenol in environmental water. Environmental Science: Nano, 2020, 7, 262-271.	2.2	28
112	Role of quaternary N in N-doped grapheneâ€"Fe ₂ O ₃ nanocomposites as efficient photocatalysts for CO ₂ reduction and acetaldehyde degradation. RSC Advances, 2015, 5, 85061-85064.	1.7	27
113	Accepting Excited High-Energy-Level Electrons and Catalyzing H ₂ Evolution of Dual-Functional Ag-TiO ₂ Modifier for Promoting Visible-Light Photocatalytic Activities of Nanosized Oxides. Journal of Physical Chemistry C, 2016, 120, 11831-11836.	1.5	27
114	A two-dimensional metal–organic framework accelerating visible-light-driven H ₂ production. Nanoscale, 2019, 11, 8304-8309.	2.8	26
115	Highly sensitive fluorescence detection of chloride ion in aqueous solution with Ag-modified porous g-C3N4 nanosheets. Chinese Chemical Letters, 2020, 31, 2725-2729.	4.8	26
116	Current advances on g-C3N4-based fluorescence detection for environmental contaminants. Journal of Hazardous Materials, 2022, 425, 127990.	6.5	26
117	Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase TiO2 and mechanism. Applied Surface Science, 2015, 351, 681-685.	3.1	25
118	Porous two-dimension MnO2-C3N4/titanium phosphate nanocomposites as efficient photocatalsyts for CO oxidation and mechanisms. Applied Catalysis B: Environmental, 2021, 282, 119563.	10.8	25
119	Graphene-Modulated PDI/g-C ₃ N ₄ All-Organic S-Scheme Heterojunction Photocatalysts for Efficient CO ₂ Reduction under Full-Spectrum Irradiation. Journal of Physical Chemistry C, 2021, 125, 23830-23839.	1.5	24
120	Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes. Scientific Reports, 2017, 7, 1303.	1.6	23
121	Energy Platform for Directed Charge Transfer in the Cascade Zâ€Scheme Heterojunction: CO ₂ Photoreduction without a Cocatalyst. Angewandte Chemie, 2021, 133, 21074-21082.	1.6	23
122	Synthesis of efficient TiO2-based photocatalysts by phosphate surface modification and the activity-enhanced mechanisms. Applied Surface Science, 2012, 258, 3340-3349.	3.1	21
123	Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification. Applied Surface Science, 2015, 358, 240-245.	3.1	21
124	Enhanced photocatalytic activities of commercial P25 TiO 2 by trapping holes and transferring electrons for CO 2 conversion and 2,4-dichlorophenol degradation. Materials Research Bulletin, 2017, 92, 23-28.	2.7	21
125	Controlled Synthesis of Nitro-Terminated Poly[2-(3-thienyl)-ethanol]/g-C ₃ N ₄ Nanosheet Heterojunctions for Efficient Visible-Light Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 7306-7317.	3.2	21
126	Improved photocatalytic activities of porous In2O3 with large surface area by coupling with K-modified CuO for degrading pollutants. Catalysis Today, 2020, 339, 403-410.	2.2	20

#	Article	IF	CITATIONS
127	Synergetic Subnano Ni―and Mnâ€Oxo Clusters Anchored by Chitosan Oligomers on 2D g 3 N 4 Boost Photocatalytic CO 2 Reduction. Solar Rrl, 2021, 5, 2000472.	3.1	20
128	Au-Modulated Z-Scheme CuPc/BiVO ₄ Nanosheet Heterojunctions toward Efficient CO ₂ Conversion under Wide-Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 2400-2408.	3.2	20
129	Ultrathin phosphate-modulated zinc phthalocyanine/perylenete diimide supermolecule Z-scheme heterojunctions as efficiently wide visible-light photocatalysts for CO2 conversion. Chemical Engineering Journal, 2021, 426, 131266.	6.6	20
130	Surface-engineering strategies for g-C3N4 as efficient visible-light photocatalyst. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 57-62.	3.2	19
131	Ultrafine SnO ₂ /010 Facet-Exposed BiVO ₄ Nanocomposites as Efficient Photoanodes for Controllable Conversion of 2,4-Dichlorophenol via a Preferential Dechlorination Path. ACS Applied Materials & Dechlorination 2,28264-28272.	4.0	19
132	Mgâ^'Oâ€Bridged Polypyrrole/gâ€C ₃ N ₄ Nanocomposites as Efficient Visibleâ€Light Catalysts for Hydrogen Evolution. ChemSusChem, 2020, 13, 3707-3717.	3.6	19
133	Enhanced photocatalytic activity of Cl-residual rutile TiO ₂ nanorods after targeted co-modification with phosphoric and boric acids. Physical Chemistry Chemical Physics, 2015, 17, 15837-15842.	1.3	18
134	The effects of BaO on the catalytic activity of La1.6BaO.4NiO4 in direct decomposition of NO. Journal of Molecular Catalysis A, 2016, 423, 277-284.	4.8	18
135	Synergy of dual single Ni and Co atoms on borate modified g-C3N4 for photocatalytic CO2 reduction. Materials Research Bulletin, 2022, 153, 111883.	2.7	18
136	Synthesis of mesoporous TiO ₂ -coupled Fe ₂ O ₃ as efficient visible nano-photocatalysts for degrading colorless pollutants. RSC Advances, 2014, 4, 52053-52059.	1.7	17
137	Review on Photogenerated Hole Modulation Strategies in Photoelectrocatalysis for Solar Fuel Production. ChemCatChem, 2019, 11, 5875-5884.	1.8	17
138	Improved photoactivities for CO2 conversion and phenol degradation of \hat{l} ±-Fe2O3 nanoparticles by co-coupling nano-sized BiPO4 and CuO to modulate electrons. Journal of Alloys and Compounds, 2019, 800, 231-239.	2.8	17
139	Graphene-modulated assembly of zinc phthalocyanine on BiVO ₄ nanosheets for efficient visible-light catalytic conversion of CO ₂ . Chemical Communications, 2020, 56, 4926-4929.	2.2	17
140	Valence-mixed iron phthalocyanines/(1 0 0) Bi2MoO6 nanosheet Z-scheme heterojunction catalysts for efficient visible-light degradation of 2-chlorophenol via preferential dechlorination. Chemical Engineering Journal, 2022, 440, 135786.	6.6	17
141	Facile Synthesis of Nâ€doped TiO ₂ and Its Enhanced Photocatalytic Activity for Degrading Colorless Pollutants. ChemPlusChem, 2014, 79, 737-742.	1.3	16
142	Improved visible-light photoactivity of Pt/g -C3N4 nanosheets for solar fuel production via pretreated boric acid modification. Research on Chemical Intermediates, 2019, 45, 249-259.	1.3	16
143	Improved Photoactivities of Largeâ€surfaceâ€area gâ€C ₃ N ₄ for CO ₂ Conversion by Controllably Introducing Co―and Niâ€5pecies to Effectively Modulate Photogenerated Charges. ChemCatChem, 2019, 11, 6282-6287.	1.8	15
144	Improved fluorescence test of chromium (VI) in aqueous solution with g-C3N4 nanosheet and mechanisms. Materials Research Bulletin, 2019, 112, 9-15.	2.7	15

#	Article	IF	CITATIONS
145	Improved Visible-Light Activities of Rutile Nanorod by Comodifying Highly Dispersed Surface Plasmon Resonance Au Nanoparticles and HF Groups for Aerobic Selective Alcohol Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14652-14659.	3.2	14
146	Controllable vertical growth onto anatase TiO2 nanoparticle films of ZnO nanorod arrays and their photoluminescence and superhydrophilic characteristics. Journal of Physics and Chemistry of Solids, 2009, 70, 867-873.	1.9	13
147	Effects of Inorganic Acid Modification on Photocatalytic Performance of TiO ₂ and Its Activityâ€Enhanced Mechanism Related to Adsorbed O ₂ . ChemPlusChem, 2014, 79, 318-324.	1.3	13
148	Capturing photogenerated electrons and holes at the B/Cl co-modified rutile TiO ₂ nanorods during organic pollutant degradation. RSC Advances, 2014, 4, 29964.	1.7	13
149	Synthesis of Silicateâ€Bridged Heterojunctional SnO ₂ /BiVO ₄ Nanoplates as Efficient Photocatalysts to Convert CO ₂ and Degrade 2,4â€Dichlorophenol. Particle and Particle Systems Characterization, 2018, 35, 1700320.	1.2	13
150	Alkali Metal Fluoride-Modified Tin Oxide for n–i–p Planar Perovskite Solar Cells. ACS Applied Materials & Solar Cells	4.0	12
151	Effects of the co-addition of Zn2+ and sodium dodecylbenzenesulfonate on photocatalytic activity and wetting performance of anatase TiO2 nanoparticle films. Thin Solid Films, 2010, 518, 3177-3181.	0.8	11
152	Synthesis of long-lived photogenerated charge carriers of Si-modified \hat{l}_{\pm} -Fe2O3 and its enhanced visible photocatalytic activity. Materials Research Bulletin, 2014, 49, 331-337.	2.7	11
153	Visible-light induced electron modulation to improve photoactivities of coral-like Bi2WO6 by coupling SnO2 as a proper energy platform. Catalysis Today, 2019, 327, 288-294.	2.2	11
154	Construction of a triple sequential junction for efficient separation of photogenerated charges in photocatalysis. Chemical Communications, 2020, 56, 197-200.	2.2	11
155	Improved visible-light activities of ultrathin CoPc/g-C3N4 heterojunctions by N-doped graphene modulation for selective benzyl alcohol oxidation. Materials Today Energy, 2022, 25, 100963.	2.5	11
156	Physicochemical properties and photocatalytic activity of H3PW12O40/TiO2. Kinetics and Catalysis, 2015, 56, 308-315.	0.3	10
157	Detection of NOx down to ppb levels at room temperature based on highly mesoporous hierarchical Ni(OH)2–In(OH)3 double hydroxide composites. Journal of Materials Science: Materials in Electronics, 2015, 26, 6612-6624.	1.1	10
158	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting Highâ€Efficiency Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2019, 25, 9670-9677.	1.7	10
159	Strategies and reaction systems for solar-driven CO2 reduction by water. , 2022, 1, 1.		10
160	Controllable synthesis of floatable nanocrystalline Ag2S and Ag by a silane coupling agent-modified solvothermal method. Materials Research Bulletin, 2012, 47, 3732-3737.	2.7	9
161	Synthesis of Au-decorated three-phase-mixed TiO ₂ /phosphate modified active carbon nanocomposites as easily-recycled efficient photocatalysts for degrading high-concentration 2,4-DCP. RSC Advances, 2019, 9, 38414-38421.	1.7	9
162	Improved photoelectric properties of BiOBr nanoplates by co-modifying SnO2 and Ag to promote photoelectrons trapped by adsorbed O2. Science China Materials, 2019, 62, 653-661.	3.5	9

#	Article	IF	CITATIONS
163	5â€Chloroindole as Interface Modifier to Improve the Efficiency and Stability of Planar Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
164	Interface Modulation of FePc/Porous Ti(HPO ₄) ₂ Zâ€Scheme Heterojunctions with Ultrafine Ag for Efficiently Photocatalytic CO Oxidation. Small Structures, 2022, 3, .	6.9	9
165	TiO ₂ -Modulated tetra(4-carboxyphenyl)porphyrin/perylene diimide organic Z-scheme nano-heterojunctions for efficient visible-light catalytic CO ₂ reduction. Nanoscale, 2022, 14, 8041-8049.	2.8	9
166	Growth and characterization of BCN nanotubes with high boron and nitrogen content. Journal of Chemical Sciences, 2013, 125, 1169-1176.	0.7	8
167	Actinyl-Modified g-C ₃ N ₄ as CO ₂ Activation Materials for Chemical Conversion and Environmental Remedy via an Artificial Photosynthetic Route. Inorganic Chemistry, 2020, 59, 8369-8379.	1.9	8
168	Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Science in China Series B: Chemistry, 2005, 48, 25.	0.8	8
169	Interlayer Modification Using Phenylethylamine Tetrafluoroborate for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 658-666.	2.5	8
170	Dual-metal Ni and Fe phthalocyanine/boron-doped g-C ₃ N ₄ <i>Z</i> -scheme 2D-heterojunctions for visible-light selective aerobic alcohol oxidation. Journal of Materials Chemistry A, 2022, 10, 12062-12069.	5.2	8
171	N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials, 2022, 12, 1564.	1.9	8
172	Synthesis of SnO2/rGO/g-C3N4 composite nanomaterials with efficient charge transfer for sensitive optoelectronic detection of NO2 gas. Materials Research Bulletin, 2022, 153, 111894.	2.7	8
173	Facile Synthesis of Phosphateâ€Functionalized MWCNT–TiO ₂ Nanocomposites as Efficient Photocatalysts and Insights into the Roles of Nanostructured Carbon. ChemPlusChem, 2013, 78, 670-676.	1.3	7
174	Improved Photocatalytic Activity of Porous In2O3 by co-Modifying Nanosized CuO and Ag with Synergistic Effects. Chemical Research in Chinese Universities, 2020, 36, 1116-1121.	1.3	7
175	Electrochemical deposition of nano-structured ZnO on the nanocrystalline TiO2 film and its characterization. Science China Chemistry, 2010, 53, 1732-1736.	4.2	6
176	Enhanced Photocatalytic Activity of P25 TiO ₂ after Modification with Phosphateâ€Treated Porous SiO ₂ . ChemPlusChem, 2014, 79, 1271-1277.	1.3	6
177	Synthesis of mixed-valence Cu phthalocyanine/graphene/g-C ₃ N ₄ ultrathin heterojunctions as efficient photocatalysts for CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 4817-4825.	2.1	6
178	Improved Photocatalytic Activities of g-C ₃ N ₄ Nanosheets by B Doping and Ru-Oxo Cluster Modification for CO ₂ Conversion. Journal of Physical Chemistry C, 2022, 126, 9704-9712.	1.5	6
179	Effects of doping La and Cu on photoinduced charge properties of TiO2 and its relationships with photocatalytic activity. Science in China Series B: Chemistry, 2006, 49, 345-350.	0.8	3
180	CO ₂ Photoreduction: Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970134.	5.6	3

#	Article	IF	CITATIONS
181	Improved photocatalytic activities of recyclable porous Fe2O3 nanotubes by modifying with nano-sized SiO2 and g-C3N4 for degrading 2-chlorophenol. Materials Research Bulletin, 2021, 142, 111416.	2.7	3
182	Effect of biocides on the precipitation of calcium fluoride in the presence of anionic copolymeric inhibitors. Toxicological and Environmental Chemistry, 0 , $1-11$.	0.6	1
183	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure (Small 32/2021). Small, 2021, 17, 2170168.	5.2	1
184	Preparation of Porous SiO ₂ -TiO ₂ Nanocomposites and Their Photocatalytic Activity. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 229-233.	0.6	1
185	Innentitelbild: Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer (Angew. Chem. 32/2019). Angewandte Chemie, 2019, 131, 10878-10878.	1.6	0