Xianfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3922713/publications.pdf

Version: 2024-02-01

21521 30047 114 13,262 123 54 citations h-index g-index papers 123 123 123 18105 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biosensors and Pointâ€ofâ€Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Advanced Healthcare Materials, 2022, 11, e2101546.	3.9	23
2	Extracellular Vesicles for the Diagnosis of Cancers. Small Structures, 2022, 3, 2100096.	6.9	7
3	Layered double hydroxides-silver-chlorin e6 nanocomposite for photo-chemo combination therapy to efficiently combat both Gram-positive and Gram-negative bacteria. Materials Today Communications, 2022, 30, 103101.	0.9	О
4	Metal organic frameworks for antibacterial applications. Chemical Engineering Journal, 2022, 435, 134975.	6.6	52
5	Carrier-free nanodrugs for safe and effective cancer treatment. Journal of Controlled Release, 2021, 329, 805-832.	4.8	90
6	New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. Journal of Controlled Release, 2021, 329, 96-120.	4.8	20
7	Highly Sensitive and Cost-Effective Portable Sensor for Early Gastric Carcinoma Diagnosis. Sensors, 2021, 21, 2639.	2.1	7
8	An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chemical Science, 2021, 12, 14353-14362.	3.7	15
9	Diamond and carbon nanostructures for biomedical applications. Functional Diamond, 2021, 1, 221-242.	1.7	9
10	Gating a Single Cell: A Label-Free and Real-Time Measurement Method for Cellular Progression. Analytical Chemistry, 2020, 92, 1738-1745.	3.2	4
11	A Carbon Flower Based Flexible Pressure Sensor Made from Largeâ€Area Coating. Advanced Materials Interfaces, 2020, 7, 2000875.	1.9	23
12	Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 2020, 8, 100085.	2.6	79
13	Photosensitizer doped zeolitic imidazolate framework-8 nanocomposites for combined antibacterial therapy to overcome methicillin-resistant Staphylococcus aureus (MRSA). Colloids and Surfaces B: Biointerfaces, 2020, 190, 110900.	2.5	12
14	High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Materials Science and Engineering C, 2020, 112, 110939.	3.8	65
15	Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. Journal of Power Sources, 2020, 455, 227983.	4.0	85
16	Electrospun Nanofibers for Drug Delivery and Biosensing. ACS Biomaterials Science and Engineering, 2019, 5, 4183-4205.	2.6	114
17	Harnessing combinational phototherapy <i>via</i> post-synthetic PpIX conjugation on nanoscale metal–organic frameworks. Journal of Materials Chemistry B, 2019, 7, 4763-4770.	2.9	11
18	Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. Advanced Therapeutics, 2019, 2, 1900093.	1.6	14

#	Article	IF	Citations
19	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108
20	Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial efficiency to overcome methicillin-resistant <i>Staphylococcus aureus </i> . Chemical Communications, 2019, 55, 2656-2659.	2.2	33
21	Continuous flow knitting of a triptycene hypercrosslinked polymer. Chemical Communications, 2019, 55, 8571-8574.	2.2	22
22	pH and redox dual responsive carrier-free anticancer drug nanoparticles for targeted delivery and synergistic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102008.	1.7	24
23	Label-Free Fluorescent Poly(amidoamine) Dendrimer for Traceable and Controlled Drug Delivery. Biomacromolecules, 2019, 20, 2148-2158.	2.6	19
24	Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44026-44035.	4.0	18
25	Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. Nano Letters, 2019, 19, 658-665.	4.5	37
26	A Cisplatin‣oaded Immunochemotherapeutic Nanohybrid Bearing Immune Checkpoint Inhibitors for Enhanced Cervical Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 3426-3430.	7.2	97
27	Highly Sensitive and Ultrastable Skin Sensors for Biopressure and Bioforce Measurements Based on Hierarchical Microstructures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4086-4094.	4.0	83
28	Current and future technological advances in transdermal gene delivery. Advanced Drug Delivery Reviews, 2018, 127, 85-105.	6.6	58
29	A Cisplatinâ€Loaded Immunochemotherapeutic Nanohybrid Bearing Immune Checkpoint Inhibitors for Enhanced Cervical Cancer Therapy. Angewandte Chemie, 2018, 130, 3484-3488.	1.6	15
30	Synthesis of Mesoporous ZIFâ€8 Nanoribbons and their Conversion into Carbon Nanoribbons for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2018, 24, 11185-11192.	1.7	24
31	Doxorubicin@Bcl-2 siRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS Applied Bio Materials, 2018, 1, 289-297.	2.3	14
32	Firmly anchored photosensitizer Chlorin e6 to layered double hydroxide nanoflakes for highly efficient photodynamic therapy in vivo. Chemical Communications, 2017, 53, 2339-2342.	2.2	29
33	Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9986-9995.	4.0	50
34	Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chemical Society Reviews, 2017, 46, 734-760.	18.7	109
35	A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34185-34193.	4.0	42
36	Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8–Poly(acrylic acid sodium) Tj ETQq0 0 ACS Applied Materials & Distriction (1988) ACS	0 rgBT /O 4.0	verlock 10 Tf 5 69

ACS Applied Materials & Distribution (1998) Interfaces, 2017, 9, 32990-33000.

#	Article	IF	Citations
37	Conjugated Polymer for Voltage-Controlled Release of Molecules. Advanced Materials, 2017, 29, 1701733.	11.1	31
38	Surface engineering of organic nanoparticles for highly improved bioimaging. Colloids and Surfaces B: Biointerfaces, 2017, 159, 596-604.	2.5	2
39	Mitochondrial-Targeting Lonidamine-Doxorubicin Nanoparticles for Synergistic Chemotherapy to Conquer Drug Resistance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43498-43507.	4.0	72
40	Chitosan nanoparticles for nitric oxide delivery in human skin. MedChemComm, 2017, 8, 713-719.	3.5	49
41	Alignment and Patterning of Ordered Smallâ€Molecule Organic Semiconductor Microâ€/Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 2475-2503.	11.1	129
42	Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells. Biomaterials, 2016, 93, 38-47.	5.7	32
43	Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale, 2016, 8, 8118-8125.	2.8	34
44	Intracellular Delivery: Diamondâ€Nanoneedleâ€Arrayâ€Facilitated Intracellular Delivery and the Potential Influence on Cell Physiology (Adv. Healthcare Mater. 10/2016). Advanced Healthcare Materials, 2016, 5, 1116-1116.	3.9	2
45	Diamondâ€Nanoneedleâ€Arrayâ€Facilitated Intracellular Delivery and the Potential Influence on Cell Physiology. Advanced Healthcare Materials, 2016, 5, 1157-1168.	3.9	27
46	Formulations for microprojection/microneedle vaccine delivery: Structure, strength and release profiles. Journal of Controlled Release, 2016, 225, 40-52.	4.8	74
47	Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8834-8840.	4.0	81
48	Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 181-189.	1.7	36
49	Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. Journal of Materials Science, 2015, 50, 7800-7807.	1.7	17
50	Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale, 2015, 7, 5683-5690.	2.8	84
51	Chalcoplatin, a dual-targeting and p53 activator-containing anticancer platinum(<scp>iv</scp>) prodrug with unique mode of action. Chemical Communications, 2015, 51, 6301-6304.	2.2	90
52	Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. CrystEngComm, 2015, 17, 2791-2800.	1.3	22
53	Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chemical Communications, 2015, 51, 11587-11590.	2.2	79
54	Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7, 17299-17305.	2.8	160

#	Article	IF	Citations
55	Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.	5.7	65
56	Highly stable organic fluorescent nanorods for living-cell imaging. Nano Research, 2015, 8, 2380-2389.	5.8	49
57	Efficient co-delivery of a Pt(<scp>iv</scp>) prodrug and a p53 activator to enhance the anticancer activity of cisplatin. Chemical Communications, 2015, 51, 7859-7862.	2.2	29
58	Plasmonic nanopillar array embedded microfluidic chips: an in situ SERS monitoring platform. Journal of Materials Chemistry A, 2015, 3, 6408-6413.	5.2	43
59	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2015, 9, 9741-9756.	7.3	149
60	Hierarchical composite structure of few-layers MoS 2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy, 2015, 18, 196-204.	8.2	191
61	A facile synthesis of graphene-supported mesoporous TiO2 hybrid sheets with uniform coverage and controllable pore diameters. Microporous and Mesoporous Materials, 2015, 206, 95-101.	2.2	8
62	Preparation and Size Control of Sub-100 nm Pure Nanodrugs. Nano Letters, 2015, 15, 313-318.	4.5	82
63	A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B, 2015, 3, 127-134.	2.9	79
64	Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. Journal of Materials Chemistry B, 2014, 2, 1699-1705.	2.9	57
65	Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials, 2014, 35, 3356-3364.	5.7	55
66	Suppression of Timeâ€Dependent Donor/Acceptor Interface Degradation by Redistributing Donor Charge Density. Advanced Materials Interfaces, 2014, 1, 1300082.	1.9	8
67	Nanomaterials for Drug Delivery. , 2014, , 221-268.		19
68	Waterâ€Dispersible, pHâ€Stable and Highlyâ€Luminescent Organic Dye Nanoparticles with Amplified Emissions for In Vitro and In Vivo Bioimaging. Small, 2014, 10, 1125-1132.	5.2	30
69	Advanced Materials and Nanotechnology for Drug Delivery. Advanced Materials, 2014, 26, 5533-5540.	11.1	66
70	Highly luminescent covalently bonded layered double hydroxide–fluorescent dye nanohybrids. Journal of Materials Chemistry C, 2014, 2, 4490-4494.	2.7	27
71	Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu ²⁺ and Ag ⁺ in water and serum. Chemical Communications, 2014, 50, 15415-15418.	2.2	95
72	Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy, 2014, 8, 133-140.	8.2	232

#	Article	IF	Citations
73	Poking cells for efficient vector-free intracellular delivery. Nature Communications, 2014, 5, 4466.	5.8	104
74	Carbon Nanoparticle-based Ratiometric Fluorescent Sensor for Detecting Mercury Ions in Aqueous Media and Living Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21270-21278.	4.0	144
75	Quantitative analysis of multiplex-components and double stranded DNA by wide-range surface-enhanced Raman spectroscopy based on ordered Ag/Si nanowire arrays. Journal of Materials Chemistry A, 2014, 2, 10218.	5.2	17
76	Micro―and Nanotechnologies for Intracellular Delivery. Small, 2014, 10, 4487-4504.	5 . 2	70
77	Controlled Assembly of Silver Nanoparticles Monolayer on 3D Polymer Nanotubes and their Applications. Small, 2014, 10, 4645-4650.	5.2	11
78	Poly(3-hexylthiophene) Nanotubes with Tunable Aspect Ratios and Charge Transport Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11874-11881.	4.0	22
79	Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for Highâ€Performance Pseudocapacitors. Advanced Functional Materials, 2014, 24, 6372-6380.	7.8	210
80	Novel Pt-loaded layered double hydroxide nanoparticles for efficient and cancer-cell specific delivery of a cisplatin prodrug. Journal of Materials Chemistry B, 2014, 2, 4868.	2.9	35
81	Nanocompositeâ€Strengthened Dissolving Microneedles for Improved Transdermal Delivery to Human Skin. Advanced Healthcare Materials, 2014, 3, 555-564.	3.9	61
82	Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale, 2013, 5, 8689.	2.8	56
83	Three-dimensional Sn–graphene anode for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 10599.	2.8	141
84	A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10092.	5. 2	88
85	Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics. Nano Today, 2013, 8, 265-289.	6.2	84
86	Depth-resolved characterization of diffusion properties within and across minimally-perturbed skin layers. Journal of Controlled Release, 2013, 166, 87-94.	4.8	33
87	Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chemical Communications, 2013, 49, 10938.	2.2	63
88	A diamond nanocone array for improved osteoblastic differentiation. Journal of Materials Chemistry B, 2013, 1, 3390.	2.9	15
89	A Diamond Nanoneedle Array for Potential Highâ€Throughput Intracellular Delivery. Advanced Healthcare Materials, 2013, 2, 1103-1107.	3.9	38
90	Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales. Biomaterials, 2013, 34, 2087-2097.	5.7	75

#	Article	IF	Citations
91	Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries. Applied Physics Letters, 2013, 103, .	1.5	28
92	Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice. PLoS ONE, 2013, 8, e67888.	1.1	66
93	Quantum dot penetration into viable human skin. Nanotoxicology, 2012, 6, 173-185.	1.6	105
94	Synthesis of Semiconductor Nanoparticles. Methods in Molecular Biology, 2012, 906, 103-123.	0.4	3
95	Rapid kinetics to peak serum antibodies is achieved following influenza vaccination by dry-coated densely packed microprojections to skin. Journal of Controlled Release, 2012, 158, 78-84.	4.8	37
96	Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. Journal of Controlled Release, 2012, 159, 215-221.	4.8	81
97	Increasing mechanical stimulus induces migration of Langerhans cells and impairs the immune response to intracutaneously delivered antigen. Experimental Dermatology, 2011, 20, 534-536.	1.4	14
98	Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. Journal of Controlled Release, 2011, 152, 349-355.	4.8	166
99	Siteâ€Selectively Coated, Denselyâ€Packed Microprojection Array Patches for Targeted Delivery of Vaccines to Skin. Advanced Functional Materials, 2011, 21, 464-473.	7.8	44
100	The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials, 2011, 32, 4670-4681.	5.7	130
101	Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. Journal of Controlled Release, 2010, 148, 327-333.	4.8	89
102	Tuning the internal structures of CdSeS nanoparticles by using different selenium and sulphur precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 14-18.	1.7	9
103	The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials, 2010, 31, 4562-4572.	5.7	120
104	Targeted, Needleâ€Free Vaccinations in Skin using Multilayered, Denselyâ€Packed Dissolving Microprojection Arrays. Small, 2010, 6, 1785-1793.	5.2	136
105	Nanopatchâ€Targeted Skin Vaccination against West Nile Virus and Chikungunya Virus in Mice. Small, 2010, 6, 1776-1784.	5.2	150
106	Potent Immunity to Low Doses of Influenza Vaccine by Probabilistic Guided Micro-Targeted Skin Delivery in a Mouse Model. PLoS ONE, 2010, 5, e10266.	1.1	154
107	Skin Vaccination against Cervical Cancer Associated Human Papillomavirus with a Novel Micro-Projection Array in a Mouse Model. PLoS ONE, 2010, 5, e13460.	1.1	97
108	Fast evaporation aided coating of densely packed and short microprojection patches for enhanced vaccine delivery to the skin. , 2010 , , .		0

#	Article	IF	CITATIONS
109	DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine, 2010, 28, 7483-7491.	1.7	59
110	Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. Journal of Controlled Release, 2009, 139, 212-220.	4.8	175
111	Highly luminescent monodisperse CdSe nanoparticles synthesized in aqueous solution. Journal of Materials Science, 2009, 44, 285-292.	1.7	41
112	A one-step aqueous synthetic route to extremely small CdSe nanoparticles. Journal of Colloid and Interface Science, 2008, 319, 140-143.	5.0	35
113	High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, 2008, 320, 634-638.	6.0	4,843
114	Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1410-1415.	3.3	1,037
115	Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales. Applied Physics Letters, 2008, 92, 101111.	1.5	78
116	Novel coating of micro-nanoprojection patches for targeted vaccine delivery to skin., 2008,,.		1
117	Targeted epidermal delivery of vaccines from coated micro-nanoprojection patches. , 2008, , .		2
118	A cell nanoinjector based on carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8218-8222.	3.3	366
119	Dissociative adsorption of pyrrole on Si(111)-(7×7). Journal of Chemical Physics, 2003, 119, 10389-10395.	1.2	34
120	Multiple configurations of N-methylpyrrole binding on Si(111)â~7×7. Physical Review B, 2003, 67, .	1.1	14
121	Selective attachment of benzonitrile on Si(111)-7 $\tilde{\text{A}}$ —7: Configuration, selectivity, and mechanism. Physical Review B, 2002, 65, .	1.1	22
122	Binding and Structure of Acetonitrile on Si(111)-7 $\tilde{A}-$ 7. Journal of Physical Chemistry B, 2002, 106, 3890-3895.	1.2	33
123	Selective Formation of Cumulative Double Bonds (CCN) in the Attachment of Multifunctional Molecules on Si(111)-7 \tilde{A} — 7. Journal of the American Chemical Society, 2002, 124, 7170-7180.	6.6	40