Alexander V Vashchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3922569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the energy of intramolecular hydrogen bonds from ¹ H NMR and QTAIM calculations. Organic and Biomolecular Chemistry, 2016, 14, 11199-11211.	2.8	119
2	CH···N and CH···O intramolecular hydrogen bonding effects in the ¹ H, ¹³ C and ¹⁵ N NMR spectra of the configurational isomers of 1â€vinylpyrroleâ€2â€carbaldehyde oxime substantiated by DFT calculations. Magnetic Resonance in Chemistry, 2009, 47, 105-112.	1.9	46
3	Intramolecular interactions inN-vinyl-2-arylpyrroles and -2-heteroarylpyrroles by1H and13C NMR. Magnetic Resonance in Chemistry, 1990, 28, 580-586.	1.9	39
4	Estimating the energy of intramolecular bifurcated (three-centered) hydrogen bond by X-ray, IR and 1 H NMR spectroscopy, and QTAIM calculations. Journal of Molecular Structure, 2018, 1163, 185-196.	3.6	27
5	Benchmark calculations of intramolecular hydrogen bond energy based on molecular tailoring and functionâ€based approaches: Developing hybrid approach. International Journal of Quantum Chemistry, 2019, 119, e26001.	2.0	24
6	Synthesis of Acyl Terphenyls and Higher Polyaromatics via Base-Promoted C–H Functionalization of Acetylarenes with Arylacetylenes. Organic Letters, 2016, 18, 2158-2161.	4.6	23
7	GIAO, DFT, AIM and NBO analysis of the NH···O intramolecular hydrogenâ€bond influence on the ¹ <i>J</i> (N,H) coupling constant in push–pull diaminoenones. Magnetic Resonance in Chemistry, 2010, 48, 661-670.	1.9	22
8	Domino Assembly of Trifluoromethylated N,O-Heterocycles by the Reaction of Fluorinated α-Bromoenones with Amino Alcohols. Journal of Organic Chemistry, 2016, 81, 10029-10034.	3.2	20
9	Comparative analysis of hydrogen bonding with participation of the nitrogen, oxygen and sulfur atoms in the 2(2′â€heteroaryl)pyrroles and their trifluoroacetyl derivatives based on the ¹ H, ¹³ C, ¹⁵ N spectroscopy and DFT calculations. Magnetic Resonance in Chemistry, 2008, 46, 441-447.	1.9	18
10	Theoretical study of bifurcated hydrogen bonding effects on the ¹ <i>J</i> (N,H), ^{1h} <i>J</i> (N,H), ^{2h} <i>J</i> (N,N) couplings and ¹ H, ¹⁵ N shieldings in model pyrroles. Magnetic Resonance in Chemistry, 2010, 48, 309-317.	1.9	17
11	Decorated Cyclopentadienes from Acetylene and Ketones in Just Two Steps. Organic Letters, 2017, 19, 3127-3130.	4.6	17
12	Quantitative decomposition of resonanceâ€assisted hydrogen bond energy in βâ€diketones into resonance and hydrogen bonding (π―and σâ€) components using molecular tailoring and functionâ€based approaches. Journal of Computational Chemistry, 2020, 41, 1285-1298.	3.3	17
13	Organic Superbases in Annulation with Propargylic Alcohols: Straightforward Synthesis of the Functionalized Oxazolopyrrolohexahydropyrimidine and Oxazolohexahydropyrimidoazepine Scaffolds. European Journal of Organic Chemistry, 2016, 2016, 5465-5469.	2.4	16
14	Transition-Metal-Free Superbase-Catalyzed C–H Vinylation of Aldimines with Acetylenes to 1-Azadienes. Journal of Organic Chemistry, 2020, 85, 3417-3425.	3.2	16
15	DFT prediction of anomalously large blue shift of the C–H stretching frequency in 2-vinyloxypyridine and -quinoline due to the intramolecular C–H···N hydrogen bonding. Computational and Theoretical Chemistry, 2010, 940, 56-60.	1.5	14
16	KOBu ^t /DMSO-Mediated α-C–H Vinylation of <i>N</i> -Benzyl Ketimines with Acetylene Gas: Stereoselective Synthesis of (<i>E</i> , <i>Z</i>)-2-Azadienes. Organic Letters, 2020, 22, 2611-2614.	4.6	14
17	Base-Catalyzed [3 + 2] Cycloaddition of <i>N-</i> Benzyl Ketimines to Arylacetylenes Followed by Oxidation: A One-Pot Access to Polyarylated 2 <i>H</i> -Pyrroles via Intermediate Pyrrolines. Organic Letters, 2021, 23, 4121-4126.	4.6	12
18	Catalyst-Free Annulation of Acylethynylpyrroles with 1-Pyrrolines: A Straightforward Access to Tetrahydrodipyrrolo[1,2- <i>a</i> :1′,2′- <i>c</i>]imidazoles. Journal of Organic Chemistry, 2022, 87, 9518-9531.	3.2	11

#	Article	IF	CITATIONS
19	Cyanoacetylenes as Triggers and Partners in KOH-Assisted Assemblies of Quinoline-Based Dihydropyrimido[1,2-a]quinolin-3-ones on Water. Journal of Organic Chemistry, 2019, 84, 9726-9733.	3.2	10
20	Toward Acetylene Renaissance: Functionally Rich <i>N</i> -Aminoindoles from Acetylene Gas, Ketones, and Hydrazines in Two Steps. Organic Letters, 2019, 21, 4275-4279.	4.6	10
21	Case study of 2-vinyloxypyridine: Quantitative assessment of the intramolecular C Hâ< N hydrogen bond energy and its contribution to the one-bond 13C1H coupling constant. Journal of Molecular Structure, 2019, 1176, 73-85.	3.6	9
22	Multimolecular Self-Organization of 1-Acetyl-1,3-bis(haloarylamines) in KOH/DMSO System: From Acetylene Gas and <i>o</i> -Halo Arylamines toward a Higher Molecular Complexity and Diversity. Organic Letters, 2021, 23, 4743-4748.	4.6	9
23	Metalâ€Free Selective Synthesis of 1,4â€Dihydropyridazines from Hydroxypyrrolines and Hydrazines. European Journal of Organic Chemistry, 2017, 2017, 4004-4010.	2.4	8
24	Acetylene as a Driving and Organizing Molecule in Oneâ€Pot Transitionâ€Metalâ€Free Synthesis of Furans using Chalcones and their Analogues. Asian Journal of Organic Chemistry, 2017, 6, 707-711.	2.7	8
25	Study of spontaneous $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ isomerization of bis[($\langle i \rangle Z \langle i \rangle$) $\hat{a} \in c$ yanomethylidene] $\hat{a} \in d$ iazapentacyclodienedicarboxylates by $\langle sup \rangle 1 \langle sup \rangle H$, $\langle sup \rangle 13 \langle sup \rangle C$, and $\langle sup \rangle 15 \langle sup \rangle N$ NMR spectroscopy, X $\hat{a} \in ray$, and quantum chemical calculation data. Magnetic Resonance in Chemistry. 2017. 55. 563-569.	1.9	8
26	Functionalized Hexahydropyrrolo[2,1â€ <i>b</i>]oxazoles from Catalystâ€Free Annulation of Δ ¹ â€Pyrrolines with Electronâ€Deficient Propargylic Alcohols. European Journal of Organic Chemistry, 2020, 2020, 4181-4192.	2.4	8
27	Oxaazabicyclooctene Oxides, Another Type of Bridgehead Nitrones: Diastereoselective Assembly from Acetylene Gas, Ketones, and Hydroxyl Amine. Journal of Organic Chemistry, 2020, 85, 6732-6740.	3.2	8
28	Single Siâ€doped fullerene as a catalyst in the oxygen reduction reaction: A quantum chemical insight. International Journal of Quantum Chemistry, 2021, 121, e26565.	2.0	5
29	Localized orbital locator as a descriptor for quantification and digital presentation of lone pairs: benchmark calculations of 4-substituted pyridines. Physical Chemistry Chemical Physics, 2021, 23, 24536-24540.	2.8	5
30	Regioselective N(2)-H-functionalization of thiosemicarbazones of aromatic and heteroaromatic aldehydes with acrylonitrile. Synthetic Communications, 2017, 47, 159-168.	2.1	4
31	Regioselectivity of the Conjugate Addition of Amines to Dissymmetrical Pullâ€Pull Alkenes. European Journal of Organic Chemistry, 2021, 2021, 3278-3288.	2.4	4
32	The Direct Phosphorylation Of 2-, 3-, and 4-Methylstyrenes and 2,4,6-Trimethylstyrene with Elemental Phosphorus <i>VIA</i> Trofimov–Gusarova Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1455-1463.	1.6	3
33	The intramolecular hydrogen bond as a unit of molecular electronics: Molecular switching controlled by overcrowded intramolecular three-centered hydrogen bond. Journal of Theoretical and Computational Chemistry, 2018, 17, 1850023.	1.8	3
34	Unusual structure of a biphenyl fragment: the important role of weak interactions. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1454-1458.	0.5	1