Zhongqiang Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/392233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoO2–graphene nanocomposite as anode material for lithium-ion batteries. Electrochimica Acta, 2012, 79, 148-153.	5.2	134
2	A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries. Journal of Power Sources, 2017, 355, 211-218.	7.8	52
3	Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for Lithium battery. Journal of Solid State Electrochemistry, 2015, 19, 1037-1044.	2.5	24
4	Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Science China Materials, 2017, 60, 304-314.	6.3	17
5	Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries. Journal of Energy Chemistry, 2018, 27, 1239-1246.	12.9	17
6	Submicron-sized mesoporous anatase TiO2 beads with trapped SnO2 for long-term, high-rate lithium storage. Journal of Alloys and Compounds, 2015, 639, 60-67.	5.5	14
7	Submicron-sized mesoporous anatase TiO2 beads with a high specific surface synthesized by controlling reaction conditions for high-performance Li-batteries. RSC Advances, 2013, 3, 13149.	3.6	13
8	The core-shell mesoporous titanium dioxide with in-situ nitrogen doped carbon as the anode for high performance lithium-ion battery. Journal of Alloys and Compounds, 2019, 806, 946-952.	5.5	10
9	Improved electrochemical performances of LiSn2(PO4)3 anode material for lithium-ion battery prepared by solid-state method. Journal of Power Sources, 2017, 361, 96-104.	7.8	6
10	Facile Fabrication of Fe3O4@TiO2@C Yolk–Shell Spheres as Anode Material for LithiumÂlon Batteries. Transactions of Tianjin University, 2020, 26, 3-12.	6.4	5
11	Synthesis of shuttle-like anatase TiO2 mesocrystals. Materials Letters, 2015, 145, 201-204.	2.6	3
12	Fast synthesis of uniform mesoporous silica spheres. Materials Letters, 2020, 273, 127947.	2.6	1