Francesco Nocito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3921516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions. Journal of Molecular Catalysis A, 2006, 257, 149-153.	4.8	287
2	Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Journal of Catalysis, 2009, 268, 106-114.	6.2	204
3	Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 2011, 67, 1308-1313.	1.9	122
4	Selective Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran or 2â€Formylâ€5â€furancarboxylic Acid in Water by using MgOâ <ceo<sub>2 Mixed Oxides as Catalysts. ChemSusChem, 2018, 11, 1305-1315.</ceo<sub>	6.8	71
5	Tunable mixed oxides based on CeO ₂ for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to FDCA in water. Green Chemistry, 2018, 20, 3921-3926.	9.0	58
6	Ru ^{II} â€Mediated Hydrogen Transfer from Aqueous Glycerol to CO ₂ : From Waste to Valueâ€Added Products. ChemSusChem, 2011, 4, 1311-1315.	6.8	38
7	The Future of Carbon Dioxide Chemistry. ChemSusChem, 2020, 13, 6219-6228.	6.8	38
8	Butanol synthesis from ethanol over CuMgAl mixed oxides modified with palladium (II) and indium (III). Fuel Processing Technology, 2018, 177, 353-357.	7.2	34
9	Sustainable Synthesis of Oxalic and Succinic Acid through Aerobic Oxidation of C6 Polyols Under Mild Conditions. ChemSusChem, 2018, 11, 1073-1081.	6.8	30
10	Selective Oxidation of 5-(Hydroxymethyl)furfural to DFF Using Water as Solvent and Oxygen as Oxidant with Earth-Crust-Abundant Mixed Oxides. ACS Omega, 2018, 3, 18724-18729.	3.5	28
11	Synthesis of cyclic carbonates from epoxides: Use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catalysis Today, 2006, 115, 117-123.	4.4	25
12	Catalytic Synthesis of Hydroxymethylâ€⊋â€oxazolidinones from Glycerol or Glycerol Carbonate and Urea. ChemSusChem, 2013, 6, 345-352.	6.8	25
13	Comparison of the behaviour of supported homogeneous catalysts in the synthesis of dimethylcarbonate from methanol and carbon dioxide: Polystyrene-grafted tin-metallorganic species versus silesquioxanes linked Nb-methoxo species. Inorganica Chimica Acta, 2008, 361, 3215-3220.	2.4	24
14	Synthesis and characterization of a novel polystyrene-tethered niobium methoxo species. Its application in the CO2-based carboxylation of methanol to afford dimethyl carbonate. Applied Catalysis A: General, 2010, 387, 113-118.	4.3	22
15	Valorization of C5 polyols by direct carboxylation to FDCA: Synthesis and characterization of a key intermediate and role of carbon dioxide. Journal of CO2 Utilization, 2019, 32, 170-177.	6.8	12
16	Selective Aerobic Oxidation of Furfural into Furoic Acid over a Highly Recyclable MnO ₂ @CeO ₂ Core–Shell Oxide: The Role of the Morphology of the Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 8615-8623.	6.7	8
17	What Catalysis Can Do for Boosting CO2 Utilization. Advances in Catalysis, 2018, , 49-111.	0.2	7
18	One-Pot Aerobic Cleavage of Monounsaturated Lipids Catalyzed by Mixed Oxides. ACS Sustainable Chemistry and Engineering, 2021, 9, 6459-6469.	6.7	6

#	Article	IF	CITATIONS
19	Large Scale Utilization of Carbon Dioxide: From Its Reaction with Energy Rich Chemicals to (Co)-processing with Water to Afford Energy Rich Products. Opportunities and Barriers. , 2019, , 1-33.		5
20	Application of pervaporation membranes to the direct carboxylation of ethene glycol using CeO2-based catalysts—Comparison of the batch reaction to a flow reaction in SC-CO2. Journal of CO2 Utilization, 2022, 58, 101918.	6.8	3