Silvia Maria Deambrosis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3921270/publications.pdf

Version: 2024-02-01

23 310 11 papers citations h-index

h-index g-index

23 451
times ranked citing authors

18

23 all docs 23 docs citations

#	Article	IF	CITATIONS
1	Magnetron Sputtering of Au-Based Alloys on NiTi Elements: Surface Investigation for New Products in SMA-Based Fashion and Luxury Accessories and Watchmaking. Coatings, 2022, 12, 136.	2.6	2
2	Mechanical and Tribological Properties of Ta-N and Ta-Al-N Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering. Materials, 2022, 15, 3354.	2.9	9
3	Surface Optimization of Commercial Porous Ti Substrates by EPD of Titanium Nitride. Membranes, 2022, 12, 531.	3.0	1
4	Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering. Surface and Coatings Technology, 2021, 405, 126556.	4.8	7
5	Production Strategies of TiNx Coatings via Reactive High Power Impulse Magnetron Sputtering for Selective H2 Separation. Membranes, 2021, 11, 360.	3.0	2
6	Study of high DC voltage breakdown between stainless steel electrodes separated by long vacuum gaps. Nuclear Fusion, 2020, 60, 076010.	3.5	12
7	Microwave assisted sintering of Na-β''-Al2O3 in single mode cavities: Insights in the use of 2450ÂMHz frequency and preliminary experiments at 5800ÂMHz. Ceramics International, 2020, 46, 28767-28777.	4.8	4
8	Al rich PVD protective coatings: A promising approach to prevent T91 steel corrosion in stagnant liquid lead. Surface and Coatings Technology, 2019, 377, 124890.	4.8	40
9	PdAg/alumina membranes prepared by high power impulse magnetron sputtering for hydrogen separation. International Journal of Hydrogen Energy, 2018, 43, 7982-7989.	7.1	11
10	Effect of alumina coatings on corrosion protection of steels in molten lead. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	9
11	Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates. Tribology International, 2018, 119, 372-380.	5.9	19
12	Evidences of accumulation points in cascade regenerative phenomena observed in high voltage do devices insulated by long vacuum gaps. Journal of Physics Communications, 2018, 2, 115002.	1.2	13
13	Tilâ°'xAlxN coatings by Reactive High Power Impulse Magnetron Sputtering: film/substrate interface effect on residual stress and high temperature oxidation. Surface and Coatings Technology, 2018, 354, 56-65.	4.8	16
14	Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-δ-Ce0.85Gd0.15O2-δ composite for hydrogen separation membranes. Journal of Membrane Science, 2018, 564, 123-132.	8.2	27
15	Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS. Ceramics International, 2017, 43, 5417-5426.	4.8	26
16	Overview of the RFX-mod fusion science activity. Nuclear Fusion, 2017, 57, 102012.	3.5	27
17	Thermal Shock and Oxidation Behavior of HiPIMS TiAlN Coatings Grown on Ti-48Al-2Cr-2Nb Intermetallic Alloy. Materials, 2016, 9, 961.	2.9	11
18	Design optimization of RF lines in vacuum environment for the MITICA experiment. Review of Scientific Instruments, 2016, 87, 02B314.	1.3	2

#	Article	IF	CITATIONS
19	Structural, morphological and mechanical characterization of Mo sputtered coatings. Surface and Coatings Technology, 2015, 266, 14-21.	4.8	15
20	Effects of Nitrogen Concentration on Microstructure of Tungsten Coatings Synthesized by Plasma Sputtering Method. Journal of Fusion Energy, 2015, 34, 1246-1251.	1.2	6
21	Overview of the RFX-mod contribution to the international Fusion Science Program. Nuclear Fusion, 2015, 55, 104012.	3.5	18
22	Removing of Mixed Coatings by Plasma Discharges. Journal of Fusion Energy, 2013, 32, 642-646.	1.2	1
23	A15 superconductors: An alternative to niobium for RF cavities. Physica C: Superconductivity and Its Applications, 2006, 441, 108-113.	1.2	32