
Nicole M Gerardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3920997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competitive Exclusion of Phytopathogenic Serratia marcescens from Squash Bug Vectors by the Gut Endosymbiont <i>Caballeronia</i> . Applied and Environmental Microbiology, 2022, 88, AEM0155021.	3.1	5
2	Coevolution's conflicting role in the establishment of beneficial associations. Evolution; International Journal of Organic Evolution, 2022, 76, 1073-1081.	2.3	2
3	Moving past postcolonial hybrid spaces: How Buddhist monks make meaning of biology. Science Education, 2021, 105, 473-497.	3.0	6
4	Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evolution Letters, 2021, 5, 118-129.	3.3	11
5	The resilience of reproductive interference. Evolutionary Ecology, 2021, 35, 537-553.	1.2	5
6	Disease management in two sympatric <i>Apterostigma</i> fungusâ€growing ants for controlling the parasitic fungus <i>Escovopsis</i> . Ecology and Evolution, 2021, 11, 6041-6052.	1.9	3
7	Symbiont Genomic Features and Localization in the Bean Beetle <i>Callosobruchus maculatus</i> . Applied and Environmental Microbiology, 2021, 87, e0021221.	3.1	7
8	Population genomics reveals variable patterns of immune gene evolution in monarch butterflies (<i>Danaus plexippus</i>). Molecular Ecology, 2021, 30, 4381-4391.	3.9	4
9	Fungi inhabiting attine ant colonies: reassessment of the genus Escovopsis and description of Luteomyces and Sympodiorosea gens. nov IMA Fungus, 2021, 12, 23.	3.8	8
10	The Importance of Environmentally Acquired Bacterial Symbionts for the Squash Bug (Anasa tristis), a Significant Agricultural Pest. Frontiers in Microbiology, 2021, 12, 719112.	3.5	13
11	Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 1007.	3.5	3
12	The Bean Beetle Microbiome Project: A Course-Based Undergraduate Research Experience in Microbiology. Frontiers in Microbiology, 2020, 11, 577621.	3.5	12
13	A need to consider the evolutionary genetics of host–symbiont mutualisms. Journal of Evolutionary Biology, 2020, 33, 1656-1668.	1.7	25
14	Evolution of animal immunity in the light of beneficial symbioses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190601.	4.0	41
15	Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles. Current Biology, 2020, 30, 2875-2886.e4.	3.9	57
16	An integrative approach to symbiont-mediated vector control for agricultural pathogens. Current Opinion in Insect Science, 2020, 39, 57-62.	4.4	14
17	Even obligate symbioses show signs of ecological contingency: Impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecology and Evolution, 2019, 9, 9087-9099.	1.9	13
18	Transcriptomics of monarch butterflies (<i>Danaus plexippus</i>) reveals that toxic host plants alter expression of detoxification genes and downâ€regulate a small number of immune genes. Molecular Ecology, 2019, 28, 4845-4863.	3.9	40

NICOLE M GERARDO

#	Article	IF	CITATIONS
19	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	4.7	49
20	The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress. Journal of Animal Ecology, 2019, 88, 601-611.	2.8	18
21	The effects of <i>Bacillus subtilis </i> on <i> Caenorhabditis elegans </i> fitness after heat stress. Ecology and Evolution, 2019, 9, 3491-3499.	1.9	9
22	Can a Symbiont (Also) Be Food?. Frontiers in Microbiology, 2019, 10, 2539.	3.5	9
23	How symbiosis and ecological context influence the variable expression of transgenerational wing induction upon fungal infection of aphids. PLoS ONE, 2018, 13, e0201865.	2.5	4
24	Lifeâ€history strategy determines constraints on immune function. Journal of Animal Ecology, 2017, 86, 473-483.	2.8	21
25	Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype. Biology Letters, 2017, 13, 20170016.	2.3	26
26	Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Molecular Ecology, 2017, 26, 6742-6761.	3.9	42
27	Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biology, 2017, 15, 126.	3.8	9
28	Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal–Microbe Interactions. Frontiers in Microbiology, 2016, 07, 1444.	3.5	45
29	Patterns of Specificity of the Pathogen <i>Escovopsis</i> across the Fungus-Growing Ant Symbiosis. American Naturalist, 2016, 188, 52-65.	2.1	21
30	Condition-dependent alteration of cellular immunity by secondary symbionts in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 2016, 86, 17-24.	2.0	35
31	Small genome of the fungus <i>Escovopsis weberi</i> , a specialized disease agent of ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3567-3572.	7.1	71
32	Interchangeable allies: Exploiting development and selection to swap symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1923-1924.	7.1	0
33	Harnessing Evolution to Elucidate the Consequences of Symbiosis. PLoS Biology, 2015, 13, e1002066.	5.6	5
34	An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142957.	2.6	222
35	Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Current Opinion in Insect Science, 2014, 4, 8-14.	4.4	91
36	The symbiont side of symbiosis: do microbes really benefit?. Frontiers in Microbiology, 2014, 5, 510.	3.5	67

NICOLE M GERARDO

#	Article	IF	CITATIONS
37	Exposure to natural pathogens reveals costly aphid response to fungi but not bacteria. Ecology and Evolution, 2014, 4, 488-493.	1.9	15
38	The Combined Effects of Bacterial Symbionts and Aging on Life History Traits in the Pea Aphid, Acyrthosiphon pisum. Applied and Environmental Microbiology, 2014, 80, 470-477.	3.1	56
39	GENETIC VARIATION IN RESISTANCE AND FECUNDITY TOLERANCE IN A NATURAL HOST-PATHOGEN INTERACTION. Evolution; International Journal of Organic Evolution, 2014, 68, n/a-n/a.	2.3	40
40	The Give and Take of Host-Microbe Symbioses. Cell Host and Microbe, 2013, 14, 1-3.	11.0	10
41	Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens. Applied and Environmental Microbiology, 2013, 79, 3770-3778.	3.1	98
42	Symbiont-Mediated Protection against Fungal Pathogens in Pea Aphids: a Role for Pathogen Specificity?. Applied and Environmental Microbiology, 2013, 79, 2455-2458.	3.1	99
43	Discovery of Paratelenomus saccharalis (Dodd) (Hymenoptera: Platygastridae), an Egg Parasitoid of Megacopta cribraria F. (Hemiptera: Plataspidae) in its Expanded North American Range. Journal of Entomological Science, 2013, 48, 355-359.	0.3	40
44	Exposure to Bacterial Signals Does Not Alter Pea Aphids' Survival upon a Second Challenge or Investment in Production of Winged Offspring. PLoS ONE, 2013, 8, e73600.	2.5	6
45	Horizontally transferred fungal carotenoid genes in the two-spotted spider mite <i>Tetranychus urticae</i> . Biology Letters, 2012, 8, 253-257.	2.3	151
46	Animal Behavior and the Microbiome. Science, 2012, 338, 198-199.	12.6	400
47	Specificity in the symbiotic association between fungus-growing ants and protective <i>Pseudonocardia</i> bacteria. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1814-1822.	2.6	135
48	Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. Developmental and Comparative Immunology, 2011, 35, 1091-1097.	2.3	35
49	Non-immunological defense in an evolutionary framework. Trends in Ecology and Evolution, 2011, 26, 242-248.	8.7	152
50	Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecology Letters, 2011, 14, 453-461.	6.4	53
51	The power of paired genomes. Molecular Ecology, 2011, 20, 2038-2040.	3.9	11
52	Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 2011, 57, 830-839.	2.0	87
53	The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle. PLoS Genetics, 2011, 7, e1002007.	3.5	231
54	Variation in <i>Pseudonocardia</i> antibiotic defence helps govern parasiteâ€induced morbidity in <i>Acromyrmex</i> leafâ€cutting ants. Environmental Microbiology Reports, 2010, 2, 534-540.	2.4	77

NICOLE M GERARDO

#	Article	IF	CITATIONS
55	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	2.3	1
56	Aphid reproductive investment in response to mortality risks. BMC Evolutionary Biology, 2010, 10, 251.	3.2	35
57	Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology, 2010, 11, R21.	9.6	389
58	Labile associations between fungus-growing ant cultivars and their garden pathogens. ISME Journal, 2007, 1, 373-384.	9.8	25
59	Ancient Host–Pathogen Associations Maintained by Specificity of Chemotaxis and Antibiosis. PLoS Biology, 2006, 4, e235.	5.6	65
60	Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC Evolutionary Biology, 2006, 6, 88.	3.2	54
61	Symbiosis and Insect Diversification: an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes. Applied and Environmental Microbiology, 2005, 71, 8802-8810.	3.1	327
62	Exploiting a mutualism: parasite specialization on cultivars within the fungus–growing ant symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1791-1798.	2.6	65
63	Fungus-farming insects: Multiple origins and diverse evolutionary histories. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15247-15249.	7.1	171
64	Integrating Authentic Research Into the Emory-Tibet Science Initiative. Frontiers in Communication, 0, 7, .	1.2	1