Pradip Kumar Dutta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3920878/publications.pdf

Version: 2024-02-01

48 papers

4,510 citations

28 h-index 206029 48 g-index

48 all docs 48 docs citations

48 times ranked

6143 citing authors

#	Article	IF	Citations
1	Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 2009, 114, 1173-1182.	4.2	1,165
2	Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules, 2009, 45, 372-376.	3.6	380
3	In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydrate Polymers, 2013, 95, 530-539.	5.1	307
4	Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 2015, 73, 49-57.	3.6	300
5	Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydrate Polymers, 2020, 227, 115348.	5.1	231
6	CHITIN AND CHITOSAN FOR VERSATILE APPLICATIONS. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2002, 42, 307-354.	2.2	188
7	Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 2021, 334, 127605.	4.2	183
8	External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bulletin of Materials Science, 2006, 29, 233-238.	0.8	175
9	Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bulletin of Materials Science, 2011, 34, 29-35.	0.8	174
10	Preparation and properties of highly soluble chitosan–l-glutamic acid aerogel derivative. Carbohydrate Polymers, 2009, 76, 188-195.	5.1	110
11	Preparation and characterization of N-heterocyclic chitosan derivative based gels for biomedical applications. International Journal of Biological Macromolecules, 2009, 45, 330-337.	3.6	104
12	Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence, 2017, 190, 492-503.	1.5	99
13	Methyl methacrylate modified chitosan: Synthesis, characterization and application in drug and gene delivery. Carbohydrate Polymers, 2019, 211, 109-117.	5.1	79
14	Antibacterial activity of diisocyanate-modified chitosan for biomedical applications. International Journal of Biological Macromolecules, 2016, 84, 349-353.	3.6	70
15	Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydrate Polymers, 2018, 193, 99-107.	5.1	64
16	A systematic study on chitosan-liposome based systems for biomedical applications. International Journal of Biological Macromolecules, 2020, 160, 470-481.	3.6	63
17	Cu(II)-carboxymethyl chitosan-silane schiff base complex grafted on nano silica: Structural evolution, antibacterial performance and dye degradation ability. International Journal of Biological Macromolecules, 2018, 110, 215-226.	3.6	59
18	Chitosan based antimicrobial films for food packaging applications. E-Polymers, 2008, 8, .	1.3	55

#	Article	lF	Citations
19	Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications. International Journal of Biological Macromolecules, 2009, 45, 384-392.	3.6	54
20	Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. International Journal of Biological Macromolecules, 2010, 46, 261-266.	3.6	51
21	Highly luminescent chitosan-l-cysteine functionalized CdTe quantum dots film: Synthesis and characterization. Carbohydrate Polymers, 2013, 97, 327-334.	5.1	46
22	Preparation, characterization, and optical properties of a chitosan–anthraldehyde crosslinkable film. Journal of Applied Polymer Science, 2010, 115, 3056-3062.	1.3	42
23	4-(Ethoxycarbonyl) phenyl-1-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: Preparation, characterization and antibacterial activity. International Journal of Biological Macromolecules, 2011, 49, 863-870.	3.6	37
24	Curcumin loaded chitin-glucan quercetin conjugate: Synthesis, characterization, antioxidant, in vitro release study, and anticancer activity. International Journal of Biological Macromolecules, 2018, 110, 234-244.	3.6	36
25	Preparation, Antibacterial and Physicochemical Behavior of Chitosan/Ofloxacin Complexes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2010, 59, 793-807.	1.8	35
26	Chitosan silk-based three-dimensional scaffolds containing gentamicin-encapsulated calcium alginate beads for drug administration and blood compatibility. Journal of Biomaterials Applications, 2015, 29, 1314-1325.	1.2	34
27	Green synthesis, characterization and biological evaluation of chitin glucan based zinc oxide nanoparticles and its curcumin conjugation. International Journal of Biological Macromolecules, 2020, 156, 514-521.	3.6	32
28	Phenolic compounds based conjugates from dextran aldehyde and BSA: Preparation, characterization and evaluation of their anti-cancer efficacy for therapeutic applications. International Journal of Biological Macromolecules, 2018, 110, 425-436.	3.6	30
29	Direct chitosan scaffold formation via chitin whiskers by a supercritical carbon dioxide method: a green approach. Journal of Materials Chemistry, 2009, 19, 8651.	6.7	28
30	Self-assembling N -(9-Fluorenylmethoxycarbonyl)- l -Phenylalanine hydrogel as novel drug carrier. International Journal of Biological Macromolecules, 2016, 93, 1639-1646.	3.6	27
31	Chitosan containing azo-based Schiff bases: thermal, antibacterial and birefringence properties for bio-optical devices. RSC Advances, 2016, 6, 5575-5581.	1.7	27
32	Preparation, Characterization and Optical Property of Chitosan-Phenothiazine Derivative by Microwave Assisted Synthesis. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1095-1102.	1.2	26
33	Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex. Journal of Polymer Research, 2019, 26, 1.	1.2	26
34	Dibutyrylchitin nanoparticles as novel drug carrier. International Journal of Biological Macromolecules, 2016, 82, 1011-1017.	3.6	23
35	Spectroscopic and conformational study of chitosan acid salts. Journal of Polymer Research, 2009, 16, 231-238.	1.2	21
36	Porous Chitosan Scaffolds: A Systematic Study for Choice of Crosslinker and Growth Factor Incorporation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 242-252.	1.8	20

#	Article	IF	Citations
37	Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. Journal of Drug Delivery Science and Technology, 2021, 62, 102407.	1.4	20
38	A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from \hat{l}^2 -nitrostyrenes and arylazo sulfones. Organic and Biomolecular Chemistry, 2021, 19, 6487-6492.	1.5	16
39	Antibacterial and Physiochemical Behavior of Prepared Chitosan/pyridine-3,5-di-carboxylic Acid Complex for Biomedical Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 246-253.	1.2	15
40	Natural Antioxidant and Antimicrobial Agents from Agrowastes: An Emergent Need to Food Packaging. Waste and Biomass Valorization, 2020, 11, 1905-1916.	1.8	11
41	Thiol modified chitosan-silica nanohybrid for antibacterial, antioxidant and drug delivery application. Journal of the Indian Chemical Society, 2021, 98, 100108.	1.3	10
42	In-vitro toxicity induced by quartz nanoparticles: Role of ER stress. Toxicology, 2018, 404-405, 1-9.	2.0	8
43	Synthesis, characterization and application of chitosan-N-(4-hydroxyphenyl)-methacrylamide derivative as a drug and gene carrier. International Journal of Biological Macromolecules, 2022, 195, 75-85.	3.6	7
44	Stability-indicative HPLC determination of donepezil hydrochloride in tablet dosage form. Pharmaceutical Chemistry Journal, 2012, 45, 766-770.	0.3	5
45	Evaluation of the DNA damaging potential of indigenous health hazardous quartz nanoparticles on the cultured lung cells. Toxicology Research, 2017, 6, 152-161.	0.9	5
46	Preparation of Dextran Aldehyde and BSA Conjugates from Ligno-cellulosic Biowaste for Antioxidant and Anti-cancer Efficacy. Waste and Biomass Valorization, 2021, 12, 1327-1339.	1.8	5
47	'Click' synthesized non-substituted triazole modified chitosan from CaC2 as a novel antibacterial and antioxidant polymer. Journal of Polymer Research, 2022, 29, .	1.2	5
48	Thioglycolic acid modified chitosan: a template for in-situ synthesis of CdSe QDs for cell imaging. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 711-724.	1.2	2