Julianne M Gibbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/392080/publications.pdf

Version: 2024-02-01

236612 276539 1,787 50 25 41 citations h-index g-index papers 63 63 63 1792 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymerâ'DNA Hybrids as Electrochemical Probes for the Detection of DNA. Journal of the American Chemical Society, 2005, 127, 1170-1178.	6.6	157
2	(Salen)Tin Complexes:Â Syntheses, Characterization, Crystal Structures, and Catalytic Activity in the Formation of Propylene Carbonate from CO2and Propylene Oxide. Inorganic Chemistry, 2004, 43, 4315-4327.	1.9	115
3	Multifunctional Polymeric Nanoparticles from Diverse Bioactive Agents. Journal of the American Chemical Society, 2006, 128, 4168-4169.	6.6	97
4	Specific Cation Effects on the Bimodal Acid–Base Behavior of the Silica/Water Interface. Journal of Physical Chemistry Letters, 2012, 3, 1269-1274.	2.1	91
5	Separating the pH-Dependent Behavior of Water in the Stern and Diffuse Layers with Varying Salt Concentration. Journal of Physical Chemistry C, 2017, 121, 20229-20241.	1.5	89
6	Making "Sense―of DNA. Journal of the American Chemical Society, 2007, 129, 7492-7493.	6.6	81
7	pH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer. Journal of Physical Chemistry Letters, 2017, 8, 2855-2861.	2.1	76
8	Bimodal or Trimodal? The Influence of Starting pH on Site Identity and Distribution at the Low Salt Aqueous/Silica Interface. Journal of Physical Chemistry C, 2015, 119, 16560-16567.	1.5	63
9	Heterogeneous Ozone Oxidation Reactions of 1-Pentene, Cyclopentene, Cyclohexene, and a Menthenol Derivative Studied by Sum Frequency Generation. Journal of Physical Chemistry A, 2008, 112, 11688-11698.	1.1	58
10	Jammed Acidâ´'Base Reactions at Interfaces. Journal of the American Chemical Society, 2008, 130, $15444-15447$.	6.6	58
11	Insights into Heterogeneous Atmospheric Oxidation Chemistry:  Development of a Tailor-Made Synthetic Model for Studying Tropospheric Surface Chemistry. Journal of Physical Chemistry C, 2007, 111, 1567-1578.	1.5	55
12	Role of Ions on the Surface-Bound Water Structure at the Silica/Water Interface: Identifying the Spectral Signature of Stability. Journal of Physical Chemistry Letters, 2021, 12, 2854-2864.	2.1	55
13	Sharp Melting Transitions in DNA Hybrids without Aggregate Dissolution:Â Proof of Neighboring-Duplex Cooperativity. Journal of the American Chemical Society, 2007, 129, 15535-15540.	6.6	51
14	Halide-Induced Cooperative Acid–Base Behavior at a Negatively Charged Interface. Journal of Physical Chemistry C, 2013, 117, 8840-8850.	1.5	46
15	New Insights into χ ⁽³⁾ Measurements: Comparing Nonresonant Second Harmonic Generation and Resonant Sum Frequency Generation at the Silica/Aqueous Electrolyte Interface. Journal of Physical Chemistry C, 2019, 123, 10991-11000.	1.5	43
16	Highly Cooperative Behavior of Peptide Nucleic Acidâ€Linked DNAâ€Modified Goldâ€Nanoparticle and Combâ€Polymer Aggregates. Advanced Materials, 2009, 21, 706-709.	11.1	42
17	The influence of concentration on specific ion effects at the silica/water interface. Journal of Physics Condensed Matter, 2014, 26, 244107.	0.7	40
18	Sharp Melting in DNA-Linked Nanostructure Systems:  Thermodynamic Models of DNA-Linked Polymers. Journal of Physical Chemistry B, 2007, 111, 8785-8791.	1.2	38

#	Article	IF	CITATIONS
19	DNA Single Strands Tethered to Fused Quartz/Water Interfaces Studied by Second Harmonic Generation. Journal of the American Chemical Society, 2005, 127, 15368-15369.	6.6	36
20	Chemically diverse environmental interfaces and their reactions with ozone studied by sum frequency generation. Vibrational Spectroscopy, 2009, 50, 86-98.	1.2	36
21	DNA at Aqueous/Solid Interfaces: Chirality-Based Detection via Second Harmonic Generation Activity. Journal of the American Chemical Society, 2009, 131, 844-848.	6.6	35
22	Environmental Biogeochemistry Studied by Second-Harmonic Generation:  A Look at the Agricultural Antibiotic Oxytetracyclineâ€. Journal of Physical Chemistry C, 2007, 111, 8796-8804.	1.5	31
23	Silica Surface Charge Enhancement at Elevated Temperatures Revealed by Interfacial Water Signals. Journal of the American Chemical Society, 2020, 142, 669-673.	6.6	31
24	Tuning Toehold Length and Temperature to Achieve Rapid, Colorimetric Detection of DNA from the Disassembly of DNA–Gold Nanoparticle Aggregates. Langmuir, 2016, 32, 1585-1590.	1.6	29
25	Orthogonally Reactive SAMs as a General Platform for Bifunctional Silica Surfaces. Langmuir, 2011, 27, 741-750.	1.6	25
26	Cooperative Melting in Caged Dimers of Rigid Small Molecule-DNA Hybrids. Journal of the American Chemical Society, 2008, 130, 9628-9629.	6.6	24
27	Monitoring DNA Hybridization and Thermal Dissociation at the Silica/Water Interface Using Resonantly Enhanced Second Harmonic Generation Spectroscopy. Analytical Chemistry, 2013, 85, 8031-8038.	3.2	23
28	Structure of the Silica/Divalent Electrolyte Interface: Molecular Insight into Charge Inversion with Increasing pH. Journal of Physical Chemistry C, 2020, 124, 26973-26981.	1.5	23
29	Anion Chelation by Amido Acid Functionalized Fused Quartz/Water Interfaces Studied by Nonlinear Optics. Journal of the American Chemical Society, 2007, 129, 7175-7184.	6.6	22
30	Sharp Melting of Polymerâ^'DNA Hybrids:Â An Associative Phase Separation Approach. Journal of Physical Chemistry B, 2007, 111, 1610-1619.	1.2	20
31	Sharpening the Thermal Release of DNA from Nanoparticles: Towards a Sequential Release Strategy. Small, 2013, 9, 2862-2871.	5.2	19
32	Tuning DNA Stability To Achieve Turnover in Template for an Enzymatic Ligation Reaction. Angewandte Chemie - International Edition, 2011, 50, 8922-8926.	7.2	18
33	Accelerated Ripening in Chemically Fueled Emulsions**. ChemSystemsChem, 2021, 3, e2000034.	1.1	18
34	Method for Evaluating Vibrational Mode Assignments in Surface-Bound Cyclic Hydrocarbons Using Sum-Frequency Generation. Journal of Physical Chemistry C, 2011, 115, 18284-18294.	1.5	17
35	Tuning Ratios, Densities, and Supramolecular Spacing in Bifunctional DNAâ€Modified Gold Nanoparticles. Small, 2012, 8, 873-883.	5.2	17
36	Rapid, Isothermal DNA Selfâ€Replication Induced by a Destabilizing Lesion. Angewandte Chemie - International Edition, 2013, 52, 10577-10581.	7.2	15

#	Article	IF	CITATIONS
37	Achieving room temperature DNA amplification by dialling in destabilization. Chemical Communications, 2015, 51, 9101-9104.	2.2	12
38	The thermal reorganization of DNA immobilized at the silica/buffer interface: a vibrational sum frequency generation investigation. Physical Chemistry Chemical Physics, 2015, 17, 12452-12457.	1.3	11
39	Influence of High pH on the Organization of Acetonitrile at the Silica/Water Interface Studied by Sum Frequency Generation Spectroscopy. Langmuir, 2018, 34, 4445-4454.	1.6	9
40	Quick Click: The DNAâ€Templated Ligation of 3′â€∢i>Oà6€Propargyl―and 5′â€Azideâ€Modified Strand as and More Selective than Ligase. ChemBioChem, 2018, 19, 2081-2087.	ds Is as Rap 1.3	oid
41	Following the Azideâ€Alkyne Cycloaddition at the Silica/Solvent Interface with Sum Frequency Generation. ChemPhysChem, 2014, 15, 2247-2251.	1.0	8
42	The Influence of Gap Length on Cooperativity and Rate of Association in DNA-Modified Gold Nanoparticle Aggregates. Journal of Physical Chemistry C, 2012, 116, 11694-11701.	1.5	7
43	Ketone Binding at Amino and Ureido Monolayer/Solvent Interfaces Studied by Nonlinear Optical Techniques. Journal of Physical Chemistry C, 2014, 118, 28662-28670.	1.5	6
44	The presence of a $5\hat{a}\in^2$ -abasic lesion enhances discrimination of single nucleotide polymorphisms while inducing an isothermal ligase chain reaction. Analyst, The, 2016, 141, 4272-4277.	1.7	5
45	Enhanced mismatch selectivity of <scp>T4 DNA</scp> ligase far above the probe: Target duplex dissociation temperature. Biopolymers, 2021, 112, e23393.	1.2	5
46	Reverse transcription lesion-induced DNA amplification: An instrument-free isothermal method to detect RNA. Analytica Chimica Acta, 2021, 1149, 238130.	2.6	4
47	Directed Assembly of Nanoparticle Thresholdâ€Selector Arrays. Advanced Electronic Materials, 2019, 5, 1900098.	2.6	3
48	CRISPR-Click Enables Dual-Gene Editing with Modular Synthetic sgRNAs. Bioconjugate Chemistry, 2022, 33, 858-868.	1.8	2
49	Back Cover: Tuning DNA Stability To Achieve Turnover in Template for an Enzymatic Ligation Reaction (Angew. Chem. Int. Ed. 38/2011). Angewandte Chemie - International Edition, 2011, 50, 8762-8762.	7.2	1