Binquan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3920749/publications.pdf

Version: 2024-02-01

28	533	14	22
papers	citations	h-index	g-index
28	28	28	235
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SERF Atomic Magnetometer–Recent Advances and Applications: A Review. IEEE Sensors Journal, 2018, 18, 8198-8207.	4.7	65
2	High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Optics Express, 2021, 29, 15641.	3.4	63
3	Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Optics Express, 2022, 30, 18300.	3.4	38
4	Design of Highly Uniform Magnetic Field Coils Based on a Particle Swarm Optimization Algorithm. IEEE Access, 2019, 7, 125310-125322.	4.2	37
5	Single-Beam Atomic Magnetometer Based on the Transverse Magnetic-Modulation or DC-Offset. IEEE Sensors Journal, 2020, 20, 5827-5833.	4.7	35
6	Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Physical Review A, 2020, 101, .	2.5	32
7	An Improved Target-Field Method for the Design of Uniform Magnetic Field Coils in Miniature Atomic Sensors. IEEE Access, 2019, 7, 74800-74810.	4.2	28
8	Novel nested saddle coils used in miniature atomic sensors. AIP Advances, 2018, 8, .	1.3	27
9	Effects of temperature on Rb and 129Xe spin polarization in a nuclear magnetic resonance gyroscope with low pump power. AIP Advances, 2017, 7, .	1.3	26
10	Uniform Field Coil Design Based on the Target-Field Method in Miniature Atomic Sensors. IEEE Sensors Journal, 2019, 19, 2895-2901.	4.7	24
11	Design of Self-Shielded Uniform Magnetic Field Coil via Modified Pigeon-Inspired Optimization in Miniature Atomic Sensors. IEEE Sensors Journal, 2021, 21, 315-324.	4.7	20
12	Enhancement of bandwidth in spin-exchange relaxation-free (SERF) magnetometers with amplitude-modulated light. Applied Physics Letters, 2022, 120, .	3.3	19
13	Optimized gas pressure of an Rb vapor cell in a single-beam SERF magnetometer. Optics Express, 2022, 30, 336.	3.4	19
14	Dual-Axis Closed Loop of a Single-Beam Atomic Magnetometer: Toward High Bandwidth and High Sensitivity. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	18
15	Self-Shielded Uniform Magnetic Field Coil Design for Miniature Atomic Sensors Using a Particle Swarm Optimization Algorithm. IEEE Access, 2020, 8, 227866-227878.	4.2	16
16	Review of atomic MEMS: driving technologies and challenges. Microsystem Technologies, 2010, 16, 1683-1689.	2.0	14
17	Indium Tin Oxide Non-Magnetic Heating Film for Miniaturized SERF Gradient Magnetometer. IEEE Sensors Journal, 2021, 21, 16554-16559.	4.7	11
18	The influence of temperature and modulated magnetic field on the transmission intensity of atomic magnetometer. Journal Physics D: Applied Physics, 2021, 54, 485001.	2.8	8

#	Article	IF	CITATIONS
19	Data-Driven Analysis Methods for Controllability and Observability of A Class of Discrete LTI Systems with Delays. , $2018, \dots$		7
20	In-Situ Relaxation Rate Measurement in Magnetic Modulated Atomic Magnetometers. IEEE Sensors Journal, 2022, 22, 248-255.	4.7	7
21	Design of Highly Linear Gradient Field Coils Based on an Improved Target-Field Method. IEEE Sensors Journal, 2021, 21, 16256-16263.	4.7	6
22	Bandwidth Expansion Through Large-Amplitude Modulation and Proportional Feedback for Single-Beam Atomic Magnetometers. IEEE Sensors Journal, 2022, 22, 2016-2023.	4.7	5
23	The influence of modulated magnetic field on light absorption in SERF atomic magnetometer. Review of Scientific Instruments, 2022, 93, 013001.	1.3	4
24	Lifetime estimation model of vapor cells in atomic magnetometers. Journal Physics D: Applied Physics, 2022, 55, 285003.	2.8	2
25	Study on spurious suppression method of high accuracy DDS. , 2015, , .		1
26	A zero-field atomic gradiometer with elliptically polarized laser-pumped used for biomagnetic measurement. , 2020, , .		1
27	Research on improved CORDIC algorithm for high accuracy DDS signal source. , 2015, , .		O
28	Real-Time Transverse Relaxation Time Measurement Method for Spin-Exchange Optical Pumped Noble Gas Nuclei in Nuclear Magnetic Resonance Rotation Sensors. IEEE Sensors Journal, 2021, 21, 20210-20219.	4.7	0