Boshou Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3920716/publications.pdf

Version: 2024-02-01

279798 345221 1,493 43 23 36 h-index citations g-index papers 43 43 43 1177 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Construction of ddRADseq-Based High-Density Genetic Map and Identification of Quantitative Trait Loci for Trans-resveratrol Content in Peanut Seeds. Frontiers in Plant Science, 2021, 12, 644402.	3.6	14
2	Dissection of the Genetic Basis of Yield-Related Traits in the Chinese Peanut Mini-Core Collection Through Genome-Wide Association Studies. Frontiers in Plant Science, 2021, 12, 637284.	3.6	18
3	Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts. International Journal of Molecular Sciences, 2021, 22, 7266.	4.1	14
4	High-Density Genetic Linkage Map Construction Using Whole-Genome Resequencing for Mapping QTLs of Resistance to Aspergillus flavus Infection in Peanut. Frontiers in Plant Science, 2021, 12, 745408.	3.6	9
5	High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2020, 133, 37-49.	3.6	33
6	Genomeâ€wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut. Plant Biotechnology Journal, 2020, 18, 779-790.	8.3	14
7	Optimization of extraction of total trans â€resveratrol from peanut seeds and its determination by HPLC. Journal of Separation Science, 2020, 43, 1024-1031.	2.5	17
8	Identification of Two Novel Peanut Genotypes Resistant to Aflatoxin Production and Their SNP Markers Associated with Resistance. Toxins, 2020, 12, 156.	3.4	15
9	Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Theoretical and Applied Genetics, 2020, 133, 1133-1148.	3.6	14
10	Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant. BMC Plant Biology, 2020, 20, 161.	3.6	28
11	Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Molecular Breeding, 2019, 39, 1.	2.1	17
12	Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins, 2019, 11, 315.	3.4	73
13	Nextâ€generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 2356-2369.	8.3	41
14	Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genetics, 2019, 20, 32.	2.7	37
15	Discovery of genomic regions and candidate genes controlling shelling percentage using <scp>QTL</scp> â€seq approach in cultivated peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 1248-1260.	8.3	51
16	Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics, 2019, 20, 51.	2.8	42
17	Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiology and Biochemistry, 2018, 125, 116-125.	5.8	15
18	Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2018, 131, 267-282.	3.6	49

#	Article	IF	CITATIONS
19	A Major and Stable QTL for Bacterial Wilt Resistance on Chromosome B02 Identified Using a High-Density SNP-Based Genetic Linkage Map in Cultivated Peanut Yuanza 9102 Derived Population. Frontiers in Genetics, 2018, 9, 652.	2.3	27
20	Stable QTLs for Plant Height on Chromosome A09 Identified From Two Mapping Populations in Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2018, 9, 684.	3.6	21
21	Development of a High-Density Genetic Map Based on Specific Length Amplified Fragment Sequencing and Its Application in Quantitative Trait Loci Analysis for Yield-Related Traits in Cultivated Peanut. Frontiers in Plant Science, 2018, 9, 827.	3.6	56
22	Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genomics Data, 2017, 11, 122-124.	1.3	24
23	Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2017, 130, 1635-1648.	3.6	48
24	Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes. Scientific Reports, 2017, 7, 8755.	3.3	62
25	Co-localization of major quantitative trait loci for pod size and weight to a 3.7ÂcM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18, 58.	2.8	54
26	Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. BMC Genomics, 2017, 18, 257.	2.8	17
27	Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis) Tj ETQq1 1 0.78	34314.rgBT	·/Oygrlock 1.0
28	Genetic Variation and Association Mapping of Seed-Related Traits in Cultivated Peanut (Arachis) Tj ETQq0 0 0 rg	gBT /Overlo 3.6	ock 10 Tf 50 3 27
29	Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. BMC Genomics, 2017, 18, 733.	2.8	37
30	PMDBase: a database for studying microsatellite DNA and marker development in plants. Nucleic Acids Research, 2017, 45, D1046-D1053.	14.5	46
31	Comprehensive Screening of Some West and Central African Sesame Genotypes for Drought Resistance Probing by Agromorphological, Physiological, Biochemical and Seed Quality Traits. Agronomy, 2017, 7, 83.	3.0	29
32	Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation. Genes, 2016, 7, 14.	2.4	51
33	Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species. PLoS ONE, 2016, 11, e0156633.	2.5	21
34	Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation. Frontiers in Plant Science, 2016, 7, 1491.	3.6	39
35	Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports, 2016, 6, 39478.	3.3	76
36	Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2016, 17, 420.	2.8	33

#	Article	IF	Citations
37	Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis) Tj ETQq1 10.	784314 r	gBT/Overloc
38	Quantitative Trait Locus Analysis of Late Leaf Spot Resistance and Plant-Type-Related Traits in Cultivated Peanut (Arachis hypogaea L.) under Multi-Environments. PLoS ONE, 2016, 11, e0166873.	2.5	51
39	Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics, 2015, 16, 1053.	2.8	93
40	PTGBase: an integrated database to study tandem duplicated genes in plants. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	46
41	The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds. PLoS ONE, 2015, 10, e0136170.	2.5	15
42	Phenotypic evaluation of the Chinese mini-mini core collection of peanut (<i>Arachis hypogaea</i> L.) and assessment for resistance to bacterial wilt disease caused by <i>Ralstonia solanacearum</i> Plant Genetic Resources: Characterisation and Utilisation, 2013, 11, 77-83.	0.8	11
43	Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genetic Resources and Crop Evolution, 2010, 57, 903-913.	1.6	15