
David A Largaespada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3919758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PVT1 dependence in cancer with MYC copy-number increase. Nature, 2014, 512, 82-86.	13.7	617
2	Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genetics, 1999, 23, 348-353.	9.4	221
3	A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nature Genetics, 2015, 47, 615-624.	9.4	207
4	A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnology, 2009, 27, 264-274.	9.4	194
5	Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nature Genetics, 2013, 45, 756-766.	9.4	137
6	A Genome-Wide Scan Identifies Variants in <i>NFIB</i> Associated with Metastasis in Patients with Osteosarcoma. Cancer Discovery, 2015, 5, 920-931.	7.7	88
7	Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance. Cancer Discovery, 2013, 3, 674-689.	7.7	87
8	APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. Journal of Experimental Medicine, 2020, 217, .	4.2	87
9	A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (<i>Apc</i>)-dependent intestinal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5765-5770.	3.3	68
10	Evi27 encodes a novel membrane protein with homology to the IL17 receptor. Oncogene, 2000, 19, 2098-2109.	2.6	64
11	Transposons As Tools for Functional Genomics in Vertebrate Models. Trends in Genetics, 2017, 33, 784-801.	2.9	64
12	mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress. Molecular Cell, 2016, 61, 625-639.	4.5	59
13	Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the sleeping beauty transposon system. Hepatology, 2011, 53, 781-790.	3.6	58
14	Engineered Swine Models of Cancer. Frontiers in Genetics, 2016, 7, 78.	1.1	56
15	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	5.2	56
16	Insertional Mutagenesis Identifies a STAT3/Arid1b∫î²-catenin Pathway Driving Neurofibroma Initiation. Cell Reports, 2016, 14, 1979-1990.	2.9	55
17	A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology, 2008, 47, 1714-1724.	3.6	53
18	Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with <i>EGFR</i> . Hepatology, 2013, 57, 120-130.	3.6	52

DAVID A LARGAESPADA

#	Article	IF	CITATIONS
19	Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Communications Biology, 2018, 1, 158.	2.0	49
20	Transposon Mutagenesis Screen Identifies Potential Lung Cancer Drivers and CUL3 as a Tumor Suppressor. Molecular Cancer Research, 2015, 13, 1238-1247.	1.5	47
21	<i>Sleeping Beauty</i> Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. Cancer Research, 2017, 77, 6576-6588.	0.4	40
22	Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Current Opinion in Genetics and Development, 2015, 30, 66-72.	1.5	35
23	<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. Cancer Research, 2019, 79, 905-917.	0.4	33
24	Transposon-Mediated Mutagenesis in Somatic Cells. Methods in Molecular Biology, 2008, 435, 95-108.	0.4	33
25	Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia. Scientific Reports, 2014, 4, 6048.	1.6	29
26	HBx-K130M/V131I Promotes Liver Cancer in Transgenic Mice via AKT/FOXO1 Signaling Pathway and Arachidonic Acid Metabolism. Molecular Cancer Research, 2019, 17, 1582-1593.	1.5	29
27	RNA sequencing of <i>Sleeping Beauty</i> transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens. Genome Research, 2016, 26, 119-129.	2.4	28
28	Sodium tanshinone IIA sulfonate ameliorates hepatic steatosis by inhibiting lipogenesis and inflammation. Biomedicine and Pharmacotherapy, 2019, 111, 68-75.	2.5	28
29	Simple and Efficient Methods for Enrichment and Isolation of Endonuclease Modified Cells. PLoS ONE, 2014, 9, e96114.	1.1	27
30	Transposon Mutagenesis in Mice. Methods in Molecular Biology, 2009, 530, 379-390.	0.4	27
31	Trp53 Haploinsufficiency Modifies EGFR-Driven Peripheral Nerve Sheath Tumorigenesis. American Journal of Pathology, 2014, 184, 2082-2098.	1.9	26
32	Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro-Oncology, 2015, 17, 1210-9.	0.6	26
33	New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes, 2020, 11, 477.	1.0	26
34	CD200 Checkpoint Reversal: A Novel Approach to Immunotherapy. Clinical Cancer Research, 2020, 26, 232-241.	3.2	25
35	<i>Cdkn2a</i> Loss in a Model of Neurofibroma Demonstrates Stepwise Tumor Progression to Atypical Neurofibroma and MPNST. Cancer Research, 2020, 80, 4720-4730.	0.4	25
36	NRAS G12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia. Blood, 2014, 124, 3274-3283.	0.6	24

DAVID A LARGAESPADA

#	Article	IF	CITATIONS
37	An ShRNA Screen Identifies MEIS1 as a Driver of Malignant Peripheral Nerve Sheath Tumors. EBioMedicine, 2016, 9, 110-119.	2.7	24
38	Micronucleus incidence and their chromosomal origin related to therapy in acute lymphoblastic leukemia (ALL) patients: Detection by micronucleus and FISH techniques. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001, 21, 341-347.	0.8	23
39	Synthesis and antileukemic activities of C1–C10-modified parthenolide analogues. Bioorganic and Medicinal Chemistry, 2015, 23, 4737-4745.	1.4	23
40	Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Seminars in Cell and Developmental Biology, 2014, 27, 86-95.	2.3	22
41	PLX3397 treatment inhibits constitutive CSF1R-induced oncogenic ERK signaling, reduces tumor growth, and metastatic burden in osteosarcoma. Bone, 2020, 136, 115353.	1.4	20
42	Generating and manipulating transgenic animals using transposable elements. Reproductive Biology and Endocrinology, 2003, 1, 80.	1.4	19
43	Parthenolide prodrug LC-1 slows growth of intracranial glioma. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2493-2495.	1.0	18
44	Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. International Journal of Molecular Sciences, 2020, 21, 1172.	1.8	15
45	Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Current Oncology Reports, 2021, 23, 45.	1.8	15
46	CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget, 2016, 7, 53191-53203.	0.8	15
47	Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica, 2016, 101, 1190-1199.	1.7	14
48	HomeRun Vector Assembly System: A Flexible and Standardized Cloning System for Assembly of Multi-Modular DNA Constructs. PLoS ONE, 2014, 9, e100948.	1.1	13
49	Retroviral insertional mutagenesis identifies the del(5q) genes, CXXC5, TIFAB and ETF1, as well as the Wnt pathway, as potential targets in del(5q) myeloid neoplasms. Haematologica, 2016, 101, e232-e236.	1.7	13
50	Evaluating the landscape of gene cooperativity with receptor tyrosine kinases in liver tumorigenesis using transposon-mediated mutagenesis. Journal of Hepatology, 2019, 70, 470-482.	1.8	13
51	SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis. Oncogene, 2020, 39, 1049-1062.	2.6	13
52	ZBTB20 regulates WNT/CTNNB1 signalling pathway by suppressing PPARG during hepatocellular carcinoma tumourigenesis. JHEP Reports, 2021, 3, 100223.	2.6	13
53	Implication of <i>ZNF217</i> in Accelerating Tumor Development and Therapeutically Targeting ZNF217-Induced PI3K–AKT Signaling for the Treatment of Metastatic Osteosarcoma. Molecular Cancer Therapeutics, 2020, 19, 2528-2541.	1.9	11
54	A comparison of risk factors for metastasis at diagnosis in humans and dogs with osteosarcoma. Cancer Medicine, 2019, 8, 3216-3226.	1.3	9

#	Article	IF	CITATIONS
55	Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. International Journal of Molecular Sciences, 2021, 22, 1954.	1.8	9
56	Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice. Neuro-Oncology Advances, 2020, 2, vdaa067.	0.4	8
57	Transposon Mutagenesis-Guided CRISPR/Cas9 Screening Strongly Implicates Dysregulation of Hippo/YAP Signaling in Malignant Peripheral Nerve Sheath Tumor Development. Cancers, 2021, 13, 1584.	1.7	7
58	Assessing Potential Genotoxicity of Sleeping Beauty Transposition Events in T-Cell Immunotherapy by Supercomputer-Based High Throughput Profiling,. Blood, 2011, 118, 4174-4174.	0.6	7
59	Antigen-Specific Culture of Memory-like CD8 T Cells for Adoptive Immunotherapy. Cancer Immunology Research, 2014, 2, 839-845.	1.6	6
60	CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits. Methods in Molecular Biology, 2019, 1907, 137-144.	0.4	4
61	Selumetinib normalizes Ras/MAPK signaling in clinically relevant neurofibromatosis type 1 minipig tissues in vivo. Neuro-Oncology Advances, 2021, 3, vdab020.	0.4	4
62	Hyperdiploid karyotype in a childhood MDS patient. International Journal of Laboratory Hematology, 2001, 23, 255-258.	0.2	3
63	Doxorubicin Paradoxically Ameliorates Tumor-Induced Inflammation in Young Mice. International Journal of Molecular Sciences, 2021, 22, 9023.	1.8	3
64	<i>In Vitro</i> Insertional Mutagenesis Screen Identifies Novel Genes Driving Breast Cancer Metastasis. Molecular Cancer Research, 2022, 20, 1502-1515.	1.5	3
65	Genetically Modified Mice in Cancer Research. , 2003, 209, 311-332.		2
66	Coping with cancer genes altered by copy number. Oncotarget, 2015, 6, 35155-35156.	0.8	2
67	Flow Assisted Mutation Enrichment (FAME): A highly efficacious and efficient method to enrich Double Knockouts (DKO) after gene editing. PLoS ONE, 2021, 16, e0247375.	1.1	1
68	Experimental gliomas in mice using the Sleeping Beauty (SB) transposon system: neuropathologic aspects. FASEB Journal, 2008, 22, 172.4.	0.2	1
69	Genetic Dissection of Cooperating Mutations in BXH-2 Acute Myeloid Leukemia with and without Nf1 Gene Mutation Blood, 2004, 104, 2567-2567.	0.6	0
70	Cooperative Pathways to Acute Myeloid Leukemia Include the Combining of Transcription Factor Alterations: PML-RARα Cooperates with SOX4 Blood, 2004, 104, 3385-3385.	0.6	0
71	In Vivo Regulatable Mouse Models of NRAS(V12)-Driven Acute Systemic Mastocytosis and Acute Myeloid Leukemia Blood, 2004, 104, 3384-3384.	0.6	0
72	A Screen for Mll-AF9 Cooperating Mutations in Leukemogenesis Using MLV-Based Mutagenesis Blood, 2006, 108, 1417-1417.	0.6	0

5

DAVID A LARGAESPADA

#	Article	IF	CITATIONS
73	RNA-Sequencing of the Transcriptome of Ara-C Resistant Murine AML Cell Lines Identifies Potential Drug Targets. Blood, 2011, 118, 2489-2489.	0.6	0
74	Mechanisms of Relapse Following Targeted Therapy in An NRASG12V and Mll-AF9 Driven Mouse Model of AML. Blood, 2011, 118, 2620-2620.	0.6	0
75	Activated NRAS Mediates Self-Renewal Capacity in AML by Facilitating the Mll/AF9-Specified Gene Expression Signature. Blood, 2012, 120, 5116-5116.	0.6	0
76	Ras-Pathway Inhibition With Targeted Therapies Abrogates Self-Renewal In Acute Myelogenous Leukemia. Blood, 2013, 122, 819-819.	0.6	0
77	Cellular Intrinsic Mechanism Affecting The Outcome Of AML Treatment With Ara-C In a Syngeneic Mouse Model. Blood, 2013, 122, 5025-5025.	0.6	0
78	Doxorubicin Cardiotoxicity in Young Tumorâ€Bearing Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
79	Correction: Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget, 2020, 11, 3618-3620.	0.8	0