
Robert T Dirksen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3919338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercise attenuates juvenile irradiation-induced skeletal muscle decline by improving calcium handling and decreasing mitochondrial stress. Journal of General Physiology, 2022, 154, .	1.9	0
2	Acute exposure to extracellular BTP2 does not inhibit Ca2+ release during EC coupling in intact skeletal muscle fibers. Journal of General Physiology, 2022, 154, .	1.9	4
3	Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer's Disease. Antioxidants, 2022, 11, 692.	5.1	30
4	Endurance exercise attenuates juvenile irradiation-induced skeletal muscle functional decline and mitochondrial stress. Skeletal Muscle, 2022, 12, 8.	4.2	5
5	Variants in ASPH cause exertional heat illness and are associated with malignant hyperthermia susceptibility. Nature Communications, 2022, 13, .	12.8	7
6	Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genetics in Medicine, 2021, 23, 1288-1295.	2.4	46
7	Altered Ca2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites, 2021, 11, 424.	2.9	27
8	How mutations in RYR1 that cause malignant hyperthermia increase RYR1 sensitivity to activators. Cell Calcium, 2021, 97, 102412.	2.4	0
9	PharmGKB summary: very important pharmacogene information for CACNA1S. Pharmacogenetics and Genomics, 2020, 30, 34-44.	1.5	7
10	Adaptive thermogenesis enhances the life-threatening response to heat in mice with an Ryr1 mutation. Nature Communications, 2020, 11, 5099.	12.8	16
11	Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skeletal Muscle, 2020, 10, 32.	4.2	45
12	Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. Journal of General Physiology, 2020, 152, .	1.9	7
13	Pre-assembled Ca2+ entry units and constitutively active Ca2+ entry in skeletal muscle of calsequestrin-1 knockout mice. Journal of General Physiology, 2020, 152, .	1.9	32
14	Muscle-specific SMN reduction reveals motor neuron–independent disease in spinal muscular atrophy models. Journal of Clinical Investigation, 2020, 130, 1271-1287.	8.2	67
15	Identification of drug modifiers for RYR1-related myopathy using a multi-species discovery pipeline. ELife, 2020, 9, .	6.0	20
16	Introduction. Archives of Biochemistry and Biophysics, 2019, 669, 31.	3.0	0
17	Mouse model of severe recessive RYR1-related myopathy. Human Molecular Genetics, 2019, 28, 3024-3036.	2.9	22
18	lsolating a reverse-mode ATP synthase–dependent mechanism of mitoflash activation. Journal of General Physiology, 2019, 151, 708-713.	1.9	4

#	Article	IF	CITATIONS
19	Substrate-dependent and cyclophilin D-independent regulation of mitochondrial flashes in skeletal and cardiac muscle. Archives of Biochemistry and Biophysics, 2019, 665, 122-131.	3.0	2
20	Clinical Pharmacogenetics Implementation Consortium (<scp>CPIC</scp>) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of <i><scp>RYR</scp>1</i> or <i><scp>CACNA</scp>1S</i> Genotypes. Clinical Pharmacology and Therapeutics, 2019, 105, 1338-1344.	4.7	56
21	Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle. ELife, 2019, 8, .	6.0	36
22	Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy. Circulation, 2018, 138, 1864-1878.	1.6	34
23	Risk of cardiac events in Long QT syndrome patients when taking antiseizure medications. Translational Research, 2018, 191, 81-92.e7.	5.0	16
24	Tamoxifen therapy in a murine model of myotubular myopathy. Nature Communications, 2018, 9, 4849.	12.8	41
25	Role of STIM1/ORAI1-mediated store-operated Ca2+ entry in skeletal muscle physiology and disease. Cell Calcium, 2018, 76, 101-115.	2.4	67
26	Cardiac metabolic effects of K _{Na} 1.2 channel deletion and evidence for its mitochondrial localization. FASEB Journal, 2018, 32, 6135-6149.	0.5	23
27	Congenital myopathy results from misregulation of a muscle Ca ²⁺ channel by mutant Stac3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E228-E236.	7.1	43
28	Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Scientific Reports, 2017, 7, 14286.	3.3	67
29	Reduced threshold for store overload-induced Ca2+ release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease. Biochemical Journal, 2017, 474, 2749-2761.	3.7	17
30	Trojan triplets: RNA-based pathomechanisms for muscle dysfunction in Huntington's disease. Journal of General Physiology, 2017, 149, 49-53.	1.9	0
31	Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. ELife, 2017, 6, .	6.0	116
32	Orai1 enhances muscle endurance by promoting fatigueâ€resistant type I fiber content but not through acute storeâ€operated Ca ²⁺ entry. FASEB Journal, 2016, 30, 4109-4119.	0.5	46
33	Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology, 2016, 87, 1660-1668.	1.1	38
34	Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxidants and Redox Signaling, 2016, 25, 534-549.	5.4	54
35	Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway. PLoS ONE, 2016, 11, e0164028.	2.5	9
36	Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skeletal Muscle, 2015, 5, 23.	4.2	6

#	Article	IF	CITATIONS
37	Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice. Skeletal Muscle, 2015, 5, 10.	4.2	33
38	Antioxidants Protect Calsequestrin-1 Knockout Mice from Halothane- and Heat-induced Sudden Death. Anesthesiology, 2015, 123, 603-617.	2.5	35
39	Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. ELife, 2015, 4, .	6.0	103
40	Age-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle. Oncotarget, 2015, 6, 35358-35371.	1.8	83
41	New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin. Journal of General Physiology, 2015, 145, 127-153.	1.9	14
42	Ca2+ permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca2+ signaling to sustain muscle function. Skeletal Muscle, 2015, 5, 4.	4.2	43
43	Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism. Journal of Biological Chemistry, 2015, 290, 23751-23765.	3.4	39
44	Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium, 2015, 57, 14-24.	2.4	104
45	Electrical Disturbances in the Brain and Heart in Long QT Syndrome: A Dangerous Synergy. FASEB Journal, 2015, 29, 1042.1.	O.5	1
46	Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Human Molecular Genetics, 2014, 23, 3706-3715.	2.9	52
47	RGK proteins. Channels, 2014, 8, 286-287.	2.8	0
48	Cheng et al. reply. Nature, 2014, 514, E14-E15.	27.8	19
49	Monovalent Cationic Channel Activity in the Inner Membrane of Nuclei from Skeletal Muscle Fibers. Biophysical Journal, 2014, 107, 2027-2036.	0.5	3
50	Triadopathies: An Emerging Class of Skeletal Muscle Diseases. Neurotherapeutics, 2014, 11, 773-785.	4.4	60
51	Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus―patch clamp. Cell Calcium, 2014, 56, 96-107.	2.4	22
52	Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nature Communications, 2013, 4, 2805.	12.8	118
53	Respective Contribution of Mitochondrial Superoxide and pH to Mitochondria-targeted Circularly Permuted Yellow Fluorescent Protein (mt-cpYFP) Flash Activity. Journal of Biological Chemistry, 2013, 288, 10567-10577.	3.4	67
54	Accelerated Activation of SOCE Current in Myotubes from Two Mouse Models of Anesthetic- and Heat-Induced Sudden Death. PLoS ONE, 2013, 8, e77633.	2.5	36

#	Article	IF	CITATIONS
55	Ca2+ Release in Muscle Fibers Expressing R4892W and G4896V Type 1 Ryanodine Receptor Disease Mutants. PLoS ONE, 2013, 8, e54042.	2.5	6
56	Mitochondrial superoxide flashes: From discovery to new controversies. Journal of General Physiology, 2012, 139, 425-434.	1.9	39
57	Adrenergic Signaling Controls RGK-Dependent Trafficking of Cardiac Voltage-Gated L-Type Ca 2+ Channels Through PKD1. Circulation Research, 2012, 110, 59-70.	4.5	26
58	AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nature Medicine, 2012, 18, 244-251.	30.7	99
59	Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Human Molecular Genetics, 2012, 21, 1312-1324.	2.9	146
60	Temperature and RyR1 Regulate the Activation Rate of Store-Operated Ca2+ Entry Current in Myotubes. Biophysical Journal, 2012, 103, 202-211.	0.5	32
61	Allele-Specific Gene Silencing in Two Mouse Models of Autosomal Dominant Skeletal Myopathy. PLoS ONE, 2012, 7, e49757.	2.5	17
62	Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB Journal, 2011, 25, 3068-3078.	0.5	90
63	Defects in Ca ²⁺ release associated with local expression of pathological ryanodine receptors in mouse muscle fibres. Journal of Physiology, 2011, 589, 5361-5382.	2.9	19
64	Differential impact of mitochondrial positioning on mitochondrial Ca ²⁺ uptake and Ca ²⁺ spark suppression in skeletal muscle. American Journal of Physiology - Cell Physiology, 2011, 301, C1128-C1139.	4.6	50
65	Muscle weakness in <i>Ryr1I4895T/WT</i> knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. Journal of General Physiology, 2011, 137, 43-57.	1.9	76
66	The I4895T mutation in the type 1 ryanodine receptor induces fiberâ€ŧype specific alterations in skeletal muscle that mimic premature aging. Aging Cell, 2010, 9, 958-970.	6.7	42
67	Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle. Journal of General Physiology, 2010, 136, 597-613.	1.9	42
68	Emerging questions about the macromolecular machines of muscle. Journal of General Physiology, 2010, 136, 3-5.	1.9	1
69	Ryanodinopathies. Current Topics in Membranes, 2010, 66, 139-167.	0.9	6
70	A retrograde signal from RyR1 alters DHP receptor inactivation and limits window Ca ²⁺ release in muscle fibers of Y522S RyR1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4531-4536.	7.1	62
71	Anestheticâ€and heatâ€induced sudden death in calsequestrinâ€1â€knockout mice. FASEB Journal, 2009, 23, 1710-1720.	0.5	99
72	Mitochondria Are Linked to Calcium Stores in Striated Muscle by Developmentally Regulated Tethering Structures. Molecular Biology of the Cell, 2009, 20, 1058-1067.	2.1	240

#	Article	IF	CITATIONS
73	Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21996-22001.	7.1	113
74	Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium, 2009, 45, 264-274.	2.4	52
75	Checking your SOCCs and feet: the molecular mechanisms of Ca ²⁺ entry in skeletal muscle. Journal of Physiology, 2009, 587, 3139-3147.	2.9	117
76	Sarcoplasmic reticulum–mitochondrial through-space coupling in skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference– Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process Applied Physiology, Nutrition and Metabolism, 2009, 34, 389-395.	1.9	54
77	Sarcoplasmic Reticulum-Mitochondrial Symbiosis. Exercise and Sport Sciences Reviews, 2009, 37, 29-35.	3.0	57
78	Differential dependence of storeâ€operated and excitationâ€coupled Ca ²⁺ entry in skeletal muscle on STIM1 and Orai1. Journal of Physiology, 2008, 586, 4815-4824.	2.9	149
79	RyR1 S-Nitrosylation Underlies Environmental Heat Stroke and Sudden Death in Y522S RyR1 Knockin Mice. Cell, 2008, 133, 53-65.	28.9	321
80	Superoxide Flashes in Single Mitochondria. Cell, 2008, 134, 279-290.	28.9	643
81	Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. American Journal of Physiology - Cell Physiology, 2007, 292, C1291-C1297.	4.6	65
82	Muscle Chloride Channel Dysfunction in Two Mouse Models of Myotonic Dystrophy. Journal of General Physiology, 2007, 129, 79-94.	1.9	98
83	An <i>Ryr1</i> ^{<i>I4895T</i>} mutation abolishes Ca ²⁺ release channel function and delays development in homozygous offspring of a mutant mouse line. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18537-18542.	7.1	74
84	Triadin Binding to the C-Terminal Luminal Loop of the Ryanodine Receptor is Important for Skeletal Muscle Excitation–Contraction Coupling. Journal of General Physiology, 2007, 130, 365-378.	1.9	70
85	A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochemical Journal, 2007, 401, 317-324.	3.7	25
86	Two central core disease (CCD) deletions in the C-terminal region of RYR1 alter muscle excitation-contraction (EC) coupling by distinct mechanisms. Human Mutation, 2007, 28, 61-68.	2.5	26
87	Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. Journal of Clinical Investigation, 2007, 117, 3952-7.	8.2	215
88	Sarcoplasmic reticulum: The dynamic calcium governor of muscle. Muscle and Nerve, 2006, 33, 715-731.	2.2	183
89	Heat―and anesthesiaâ€induced malignant hyperthermia in an RyR1 knockâ€in mouse. FASEB Journal, 2006, 20, 329-330.	0.5	179
90	Rapamycin and FK506 reduce skeletal muscle voltage sensor expression and function. Cell Calcium, 2005, 38, 35-44.	2.4	14

#	Article	IF	CITATIONS
91	Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Human Molecular Genetics, 2005, 14, 2189-2200.	2.9	247
92	Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling. American Journal of Physiology - Cell Physiology, 2004, 287, C1094-C1102.	4.6	107
93	Distinct Effects on Ca2+ Handling Caused by Malignant Hyperthermia and Central Core Disease Mutations in RyR1. Biophysical Journal, 2004, 87, 3193-3204.	0.5	98
94	Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochemical and Biophysical Research Communications, 2004, 322, 1256-1266.	2.1	50
95	FKBP12 Binding to RyR1 Modulates Excitation-Contraction Coupling in Mouse Skeletal Myotubes. Journal of Biological Chemistry, 2003, 278, 22600-22608.	3.4	61
96	The Pore Region of the Skeletal Muscle Ryanodine Receptor Is a Primary Locus for Excitation-Contraction Uncoupling in Central Core Disease. Journal of General Physiology, 2003, 121, 277-286.	1.9	70
97	Calmodulin Binding to the 3614–3643 Region of RyR1 Is Not Essential for Excitation–Contraction Coupling in Skeletal Myotubes. Journal of General Physiology, 2002, 120, 337-347.	1.9	22
98	Reactive oxygen/nitrogen species and the aged brain: Radical impact of ion channel function. Neurobiology of Aging, 2002, 23, 837-839.	3.1	8
99	Bi-directional coupling between dihydropyridine receptors and ryanodine receptors. Frontiers in Bioscience - Landmark, 2002, 7, d659-670.	3.0	65
100	Altered Ryanodine Receptor Function in Central Core Disease Leaky or Uncoupled Ca2+ Release Channels?. Trends in Cardiovascular Medicine, 2002, 12, 189-197.	4.9	115
101	Ca2+ Release through Ryanodine Receptors Regulates Skeletal Muscle L-type Ca2+ Channel Expression. Journal of Biological Chemistry, 2001, 276, 17732-17738.	3.4	43
102	Functional Effects of Central Core Disease Mutations in the Cytoplasmic Region of the Skeletal Muscle Ryanodine Receptor. Journal of General Physiology, 2001, 118, 277-290.	1.9	137
103	Prolonged depolarization promotes fast gating kinetics of Lâ€ŧype Ca 2+ channels in mouse skeletal myotubes. Journal of Physiology, 2000, 529, 647-659.	2.9	8
104	Functional Impact of the Ryanodine Receptor on the Skeletal Muscle L-Type Ca2+ Channel. Journal of General Physiology, 2000, 115, 467-480.	1.9	104
105	Role of Calcium Permeation in Dihydropyridine Receptor Function. Journal of General Physiology, 1999, 114, 393-404.	1.9	67
106	Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature, 1996, 380, 72-75.	27.8	444