
Michal Sobaszek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of novel (BiO)2OHCl/BiOBr enriched with boron doped-carbon nanowalls for photocatalytic cytostatic drug degradation: assessing photocatalytic process utilization in environmental condition. Applied Surface Science, 2022, , 152664.	3.1	2
2	Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. Environmental Science and Pollution Research, 2022, 29, 65625-65641.	2.7	6
3	Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. Journal of Hazardous Materials, 2021, 403, 123606.	6.5	106
4	Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry. Carbon, 2021, 174, 594-604.	5.4	16
5	Deuterium-Grown Highly-Oriented Boron-Doped Diamond Electrodes. ECS Meeting Abstracts, 2021, MA2021-01, 1934-1934.	0.0	0
6	Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes. Materials, 2021, 14, 4971.	1.3	4
7	Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition. Materials, 2021, 14, 6328.	1.3	0
8	In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer. Sensors and Actuators B: Chemical, 2020, 304, 127315.	4.0	4
9	The electrochemical determination of isatin at nanocrystalline boron-doped diamond electrodes: Stress monitoring of animals. Sensors and Actuators B: Chemical, 2020, 306, 127592.	4.0	14
10	Multisine impedimetric probing of biocatalytic reactions for label-free detection of DEFB1 gene: How to verify that your dog is not human?. Sensors and Actuators B: Chemical, 2020, 323, 128664.	4.0	19
11	Enhanced Charge Storage Mechanism and Long-Term Cycling Stability in Diamondized Titania Nanocomposite Supercapacitors Operating in Aqueous Electrolytes. Journal of Physical Chemistry C, 2020, 124, 15698-15712.	1.5	11
12	Electrochemical Detection of 4,4',5,5'-Tetranitro-1H,1'H-2,2'-Biimidazole on Boron-Doped Diamond/Graphene Nanowall Electrodes. IEEE Sensors Journal, 2020, 20, 9637-9643.	2.4	6
13	Electrochemical Stability of Few-Layered Phosphorene Flakes on Boron-Doped Diamond: A Wide Potential Range of Studies in Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 20233-20240.	1.5	7
14	Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization. Materials, 2019, 12, 2910.	1.3	4
15	Enhanced boron doping of thin diamond films grown in deuterium-rich microwave plasma. Diamond and Related Materials, 2019, 96, 198-206.	1.8	5
16	Multifrequency nanoscale impedance microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes. Ultramicroscopy, 2019, 199, 34-45.	0.8	12
17	Growth and Isolation of Large Area Boronâ€Doped Nanocrystalline Diamond Sheets: A Route toward Diamondâ€onâ€Graphene Heterojunction. Advanced Functional Materials, 2019, 29, 1805242.	7.8	22
18	Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosensors and Bioelectronics, 2019, 126, 308-314.	5.3	56

MICHAL SOBASZEK

#	Article	IF	CITATIONS
19	Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sensors and Actuators B: Chemical, 2019, 280, 263-271.	4.0	54
20	Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS. Optical Materials Express, 2019, 9, 3069.	1.6	16
21	Optical Monitoring of Electrochemical Processes With ITO-Based Lossy-Mode Resonance Optical Fiber Sensor Applied as an Electrode. Journal of Lightwave Technology, 2018, 36, 954-960.	2.7	51
22	Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: Advanced pre-treatment prior to the biological nitrogen removal. Chemical Engineering Journal, 2018, 334, 1074-1084.	6.6	49
23	Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration. Materials, 2018, 11, 109.	1.3	10
24	Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe. Sensors, 2018, 18, 1361.	2.1	23
25	Gas Composition Influence on the Properties of Boron-Doped Diamond Films Deposited on the Fused Silica. Materials Science-Poland, 2018, 36, 288-296.	0.4	6
26	Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor. Proceedings of SPIE, 2017, , .	0.8	0
27	Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples. Nanoscale, 2017, 9, 9701-9715.	2.8	32
28	Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing. ACS Applied Materials & Interfaces, 2017, 9, 12982-12992.	4.0	75
29	Diamond Phase (sp ³ <i>-</i> C) Rich Boron-Doped Carbon Nanowalls (sp ² <i>-</i> C): Physicochemical and Electrochemical Properties. Journal of Physical Chemistry C, 2017, 121, 20821-20833.	1.5	53
30	A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Scientific Reports, 2017, 7, 15707.	1.6	107
31	Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates. Applied Surface Science, 2016, 387, 846-856.	3.1	43
32	Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes. , 2016, , .		0
33	Melamineâ€modified Boronâ€doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine. Electroanalysis, 2016, 28, 211-221.	1.5	33
34	Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012024.	0.3	10
35	Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	18
36	Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films, 2016, 601, 35-40.	0.8	35

MICHAL SOBASZEK

#	Article	IF	CITATIONS
37	Biophotonic low-coherence sensors with boron-doped diamond thin layer. Proceedings of SPIE, 2016, ,	0.8	0
38	Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique. Carbon, 2016, 96, 1093-1105.	5.4	58
39	Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes. Optical Materials, 2015, 42, 24-34.	1.7	46
40	Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding. Diamond and Related Materials, 2015, 55, 52-63.	1.8	37
41	Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing. Proceedings of SPIE, 2015, , .	0.8	1
42	Formation of Highly Conductive Boron-Doped Diamond on TiO ₂ Nanotubes Composite for Supercapacitor or Energy Storage Devices. Journal of the Electrochemical Society, 2015, 162, A2085-A2092.	1.3	22
43	Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. Journal of Electroanalytical Chemistry, 2015, 756, 84-93.	1.9	52
44	Enhanced capacitance of composite TiO ₂ nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale, 2015, 7, 551-558.	2.8	59
45	Optimization of Polycrystalline CVD Diamond Seeding with the Use of sp ³ /sp ² Raman Band Ratio. Acta Physica Polonica A, 2015, 128, 136-140.	0.2	3
46	Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film. Journal of the Optical Society of Korea, 2015, 19, 705-710.	0.6	11
47	Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes. Journal of the Electrochemical Society, 2014, 161, H359-H364.	1.3	31
48	Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond. Sensors and Actuators B: Chemical, 2013, 189, 30-36.	4.0	31
49	Nucleation and growth of <scp>CVD</scp> diamond on fused silica optical fibres with titanium dioxide interlayer. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1991-1997.	0.8	21
50	Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamond and Related Materials, 2013, 39, 82-88.	1.8	116
51	Spectroscopic wireless sensor of hematocrit level. Sensors and Actuators A: Physical, 2013, 202, 8-12.	2.0	7
52	Spatial characterization of H 2 :CH 4 dissociation level in microwave ECR plasma source by fibre-optic OES. European Physical Journal: Special Topics, 2013, 222, 2223-2232.	1.2	4
53	Spectroscopic and Wireless Sensor of Hematocrit Level. Procedia Engineering, 2012, 47, 156-159.	1.2	2
54	Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique. Procedia Engineering, 2012, 47, 1117-1120.	1.2	15