
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918600/publications.pdf Version: 2024-02-01

ΔΝΟΡΕΛ ΕΛΡΙΝΑ

#	Article	IF	CITATIONS
1	Compressed sensing in fluorescence microscopy. Progress in Biophysics and Molecular Biology, 2022, 168, 66-80.	2.9	32
2	Above pile-up fluorescence microscopy with a 32 Mc/s single-channel time-resolved SPAD system. Optics Letters, 2022, 47, 82.	3.3	7
3	Evaluation of a pipeline for simulation, reconstruction, and classification in ultrasound-aided diffuse optical tomography of breast tumors. Journal of Biomedical Optics, 2022, 27, .	2.6	6
4	32 Mcps time-correlated single photon counting with a single SPAD avoiding pile-up. , 2022, , .		0
5	Multispectral time-resolved fluorescence microscopy based on compressive acquisitions. , 2022, , .		0
6	Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. Journal of Biomedical Optics, 2022, 27, .	2.6	9
7	Optical signatures of radiofrequency ablation in biological tissues. Scientific Reports, 2021, 11, 6579.	3.3	15
8	Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector. Optics Letters, 2021, 46, 1353.	3.3	23
9	Giga-voxel multidimensional fluorescence imaging combining single-pixel detection and data fusion. Optics Letters, 2021, 46, 4312.	3.3	9
10	Multispectral Fluorescence Lifetime Imaging with Single- Pixel Cameras and Data Fusion. , 2021, , .		0
11	Calculated optical properties of donor molecules based on benzo[1,2-b:4,5-b′]dithiophene and its derivatives. AIP Advances, 2021, 11, 125001.	1.3	0
12	Multispectral time-resolved fluorescence imaging by single-pixel detection and data fusion. , 2021, , .		0
13	SOLUS: a novel multimodal approach to ultrasound and diffuse optics imaging of breast cancer. , 2021, , .		0
14	Multispectral FLIM microscope based on compressive sensing acquisition. , 2021, , .		0
15	Three-dimensional bright-field microscopy with isotropic resolution based on multi-view acquisition and image fusion reconstruction. Scientific Reports, 2020, 10, 12771.	3.3	5
16	Optical properties of recent non-fullerene molecular acceptors for bulk heterojunction solar cells. Results in Physics, 2020, 19, 103633.	4.1	2
17	Key features in the optical properties of tissue during and after radiofrequency ablation. , 2020, , .		1
18	Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy. Biomedical Optics Express, 2020, 11, 2779.	2.9	20

#	Article	IF	CITATIONS
19	High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip. Biomedical Optics Express, 2020, 11, 4397.	2.9	35
20	Time domain diffuse optical spectroscopy for the monitoring of thermal treatment in biological tissue , 2020, , .		1
21	Multi-laboratory efforts for the standardization of performance assessment of diffuse optics instruments $\hat{a} \in $ the BitMap Exercise. , 2020, , .		1
22	Time-resolved multi-dimensional fluorescence imaging using a Digital-Micromirror-Device and a SPAD-array detector. , 2020, , .		0
23	Multi Simulation Platform for Time Domain Diffuse Optical Tomography: An Application to a Compact Hand-Held Reflectance Probe. Applied Sciences (Switzerland), 2019, 9, 2849.	2.5	5
24	Dual-Color Fluorescent Microscope on Chip for 3D Imaging of Single Cells. , 2019, , .		0
25	Semiconducting carbon nanotubes in photovoltaic blends: The case of pTB7:PC60BM:(6,5) SWNT. Journal of Applied Physics, 2019, 125, 083101.	2.5	1
26	Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. Applied Sciences (Switzerland), 2019, 9, 5465.	2.5	15
27	Bioresorbable fibers for time-domain diffuse optical measurements: a step toward next generation optical implantable devices. , 2019, , .		1
28	Solid heterogeneous phantoms for multimodal ultrasound and diffuse optical imaging: an outcome of the SOLUS project for standardization. , 2019, , .		3
29	Monitoring radiofrequency ablation of biological tissue using broadband time-resolved diffuse optical spectroscopy. , 2019, , .		2
30	Systematic study of the effect of ultrasound gel on the performances of time-domain diffuse optics and diffuse correlation spectroscopy. Biomedical Optics Express, 2019, 10, 3899.	2.9	10
31	Spatially modulated illumination allows for light sheet fluorescence microscopy with an incoherent source and compressive sensing. Biomedical Optics Express, 2019, 10, 5776.	2.9	15
32	Multi-wavelength time domain diffuse optical tomography for breast cancer: initial results on silicone phantoms. , 2019, , .		1
33	An adaptive scheme for diffuse-optical tomography based on combined structured-light illumination and single-pixel camera detection. , 2019, , .		2
34	Compressive sensing time-domain Raman spectrometer for depth sensing of diffusive media. , 2019, , .		0
35	Effects of ultrasound impedance matching fluids on diffuse optical measurements. , 2019, , .		Ο
36	Spectral approach to time domain diffuse optical tomography for breast cancer: validation on meat phantoms. , 2019, , .		0

#	Article	IF	CITATIONS
37	Fitting a spectral model for component analysis in diffuse optical tomography. , 2019, , .		Ο
38	Novel time-resolved camera based on compressed sensing. Optics Express, 2019, 27, 31889.	3.4	4
39	Towards the use of bioresorbable fibers in timeâ€domain diffuse optics. Journal of Biophotonics, 2018, 11, e201600275.	2.3	19
40	Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach. Optics Express, 2018, 26, 2270.	3.4	22
41	Time-resolved multispectral imaging based on an adaptive single-pixel camera. Optics Express, 2018, 26, 10550.	3.4	54
42	Broadband (550–1350 nm) diffuse optical characterization of thyroid chromophores. Scientific Reports, 2018, 8, 10015.	3.3	23
43	Time-resolved diffuse optical tomography system based on adaptive structured light illumination and compressive sensing detection. , 2018, , .		2
44	Frequency Offset Raman Spectroscopy (FORS) for Subsurface Probing of Highly Scattering Media. , 2018, , .		0
45	In vivo Study of the Layered Structure on the Abdomen by Broadband Time-Domain Diffuse Optical Spectroscopy. , 2018, , .		Ο
46	Broadband (600-1100 nm) Diffuse Optical Characterization of Thyroid Tissue Constituents and Application to in vivo Thyroid Studies. , 2018, , .		0
47	A Tool for Quantitative and Systematic Simulation of Diffuse Optical Tomography with a Limited Number of Fixed Sources and Detectors. , 2018, , .		Ο
48	Novel Technologies for Time-Domain Diffuse Optics: Miniaturized Wearable Devices and Bioresorbable Optical Fibers. , 2018, , .		0
49	Multidistance time domain diffuse optical spectroscopy in the assessment of abdominal fat heterogeneity. , 2018, , .		0
50	Statistics of photon penetration depth in diffusive media. , 2017, , .		0
51	Time-resolved laser spectroscopy for the in situ characterization of methacrylate monomer flow within spruce. Wood Science and Technology, 2017, 51, 227-242.	3.2	5
52	Diffuse optical tomography based on time-resolved compressive sensing. , 2017, , .		0
53	Time-resolved wavelet-based acquisitions using a single-pixel camera. Proceedings of SPIE, 2017, , .	0.8	0
54	Diffuse optical characterization of collagen absorption from 500 to 1700Ânm. Journal of Biomedical Optics, 2017, 22, 015006.	2.6	95

ANDREA FARINA

#	Article	IF	CITATIONS
55	Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging. IEEE Transactions on Computational Imaging, 2017, 3, 36-46.	4.4	81
56	Non-Contact Inclusion Detection in Food Through a Single-Photon Time-of-Flight Imager. IEEE Sensors Journal, 2017, 17, 78-83.	4.7	3
57	Broadband diffuse optical characterization of elastin for biomedical applications. Biophysical Chemistry, 2017, 229, 130-134.	2.8	11
58	Time-resolved analytical model for Raman scattering in a diffusive medium. Proceedings of SPIE, 2017, , .	0.8	0
59	Multiple-view time-resolved diffuse optical tomography based on structured illumination and compressive detection. , 2017, , .		0
60	Performance evaluation of time-domain multispectral diffuse optical tomography in the reflection geometry. , 2017, , .		0
61	Non-contact time-domain imaging of functional brain activation and heterogeneity of superficial signals. Proceedings of SPIE, 2017, , .	0.8	1
62	Thyroid tissue constituents characterization and application to in vivo studies by broadband (600-1200) Tj ETQ	0 0 0 rgB ⁻	T /Qverlock 10
63	Time-domain diffuse optics using bioresorbable fibers: a proof-of-principle study. , 2017, , .		1
64	Depth sensitivity of frequency domain optical measurements in diffusive media. Biomedical Optics Express, 2017, 8, 2990.	2.9	12
65	Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media. Optics Express, 2017, 25, 4585.	3.4	30
66	Chromophore decomposition in multispectral time-resolved diffuse optical tomography. Biomedical Optics Express, 2017, 8, 4772.	2.9	11
67	Multiple-view diffuse optical tomography system based on time-domain compressive measurements. Optics Letters, 2017, 42, 2822.	3.3	19
68	Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers. Applied Sciences (Switzerland), 2017, 7, 1235.	2.5	16
69	In vivo depth heterogeneity of the abdomen assessed by broadband time-domain diffuse optical spectroscopy. , 2017, , .		1
70	Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms. Biomedical Optics Express, 2016, 7, 4346.	2.9	17
71	Time-domain Raman analytical forward solvers. Optics Express, 2016, 24, 20382.	3.4	11

72Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter
recovery. Biomedical Optics Express, 2016, 7, 3784.2.911

#	Article	IF	CITATIONS
73	Adaptive acquisitions in biomedical optical imaging based on single pixel camera: Comparison with compressive sensing. , 2016, , .		2
74	Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study. Journal of Biomedical Optics, 2016, 21, 116002.	2.6	25
75	There's plenty of light at the bottom: statistics of photon penetration depth in random media. Scientific Reports, 2016, 6, 27057.	3.3	82
76	Photonics advancements in time-domain diffuse imaging: towards hand-held and wearable devices. , 2016, , .		0
77	New frontiers in time-domain diffuse optics, a review. Journal of Biomedical Optics, 2016, 21, 091310.	2.6	181
78	Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 406-414.	2.9	66
79	In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies. PLoS ONE, 2016, 11, e0168426.	2.5	23
80	Quantification of effective absorption perturbations for Time-Resolved Diffuse Optical Tomography with totally absorbing objects. , 2016, , .		0
81	Statistics of the light penetration depth in a diffusive medium. , 2016, , .		Ο
82	In vivo Time domain Broadband (600 -1200 nm) Diffuse Optical Characterization of Human Bone. , 2016, ,		0
83	Analytical model for time-resolved Raman scattering in a diffusive parallelepiped. , 2016, , .		О
84	Solid switchable phantom for diffuse optical imaging. , 2015, , .		0
85	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		Ο
86	Time-resolved diffused optical characterization of key tissue constituents of human bony prominence locations. Proceedings of SPIE, 2015, , .	0.8	7
87	Spectrally Resolved Single-Photon Timing of Silicon Photomultipliers for Time-Domain Diffuse Spectroscopy. IEEE Photonics Journal, 2015, 7, 1-12.	2.0	28
88	Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. Journal of Biomedical Optics, 2015, 20, 121304.	2.6	45
89	Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range. , 2015, , .		4
90	Time domain diffuse optical spectroscopy:In vivoquantification of collagen in breast tissue. , 2015, , .		1

#	Article	IF	CITATIONS
91	Effects of time-gated detection in diffuse optical imaging at short source-detector separation. Journal Physics D: Applied Physics, 2015, 48, 045401.	2.8	35
92	Towards next generation time-domain diffuse optics devices. , 2015, , .		2
93	Diffuse optical tomography by using time-resolved single pixel camera. , 2015, , .		0
94	Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomedical Optics Express, 2015, 6, 1749.	2.9	100
95	In-vivo multilaboratory investigation of the optical properties of the human head. Biomedical Optics Express, 2015, 6, 2609.	2.9	48
96	Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics. Optics Express, 2015, 23, 13937.	3.4	68
97	Time-domain diffuse optics: towards next generation devices. , 2015, , .		1
98	Emission Engineering in Germanium Nanoresonators. ACS Photonics, 2015, 2, 53-59.	6.6	27
99	Broadband Time-Resolved Diffuse Optical Spectrometer for Clinical Diagnostics: Characterization and in-vivo Measurements in the 600-1350 nm spectral range. , 2015, , .		1
100	Time-domain diffuse optics: towards next generation devices. , 2015, , .		0
101	Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. Journal of Biomedical Optics, 2014, 19, 086010.	2.6	101
102	Nondestructive optical detection of monomer uptake in wood polymer composites. Optics Letters, 2014, 39, 228.	3.3	15
103	Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomedical Optics Express, 2014, 5, 2037.	2.9	133
104	Light diffusion in quenched disorder: Role of step correlations. Physical Review E, 2014, 89, 022141.	2.1	16
105	Recipes to make organic phantoms for diffusive optical spectroscopy. Applied Optics, 2013, 52, 2494.	1.8	11
106	Note: Comparison between a prism-based and an acousto-optic tunable filter-based spectrometer for diffusive media. Review of Scientific Instruments, 2013, 84, 016109.	1.3	4
107	Diffuse Optical Techniques Applied to Wood Characterisation. Journal of Near Infrared Spectroscopy, 2013, 21, 259-268.	1.5	32
108	Time-resolved optical spectroscopy of the chest: is it possible to probe the lung?. , 2013, , .		2

#	Article	IF	CITATIONS
109	Multi-laboratory investigation of the optical properties of the human head. , 2013, , .		Ο
110	Comparison of organic phantom recipes and characterization by time-resolved diffuse optical spectroscopy. Proceedings of SPIE, 2013, , .	0.8	1
111	In-vivo optical spectroscopy in the time-domain beyond 1100 nm. , 2013, , .		1
112	Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods. Applied Optics, 2012, 51, 7858.	1.8	9
113	Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode. Applied Spectroscopy, 2012, 66, 944-950.	2.2	48
114	Time-Domain Broadband near Infrared Spectroscopy of the Female Breast: A Focused Review from Basic Principles to Future Perspectives. Journal of Near Infrared Spectroscopy, 2012, 20, 223-235.	1.5	37
115	Spectral Distortions in Time-Resolved Diffuse Optical Spectroscopy Due to AOTFs. , 2012, , .		0
116	Time-resolved reflectance spectroscopy nondestructively reveals structural changes in â€~Pink Lady®' apples during storage. Procedia Food Science, 2011, 1, 81-89.	0.6	35
117	Non destructive detection of brown heart in â€~Braeburn' apples by time-resolved reflectance spectroscopy. Procedia Food Science, 2011, 1, 413-420.	0.6	10
118	Photonics for Life. IEEE Pulse, 2011, 2, 16-23.	0.3	3
119	Time-domain diffuse optical spectroscopy up to 1700 nm using an InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	1
120	Time-resolved diffuse optical spectroscopy up to 1700 nm using a time-gated InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	2
121	Time-domain diffuse optical spectroscopy beyond 1100 nm: initial feasibility study. Proceedings of SPIE, 2011, , .	0.8	1
122	Assessment of basic instrumental performance of time-domain optical brain imagers. Proceedings of SPIE, 2011, , .	0.8	6
123	In vivo swine myocardial tissue characterization and monitoring during open chest surgery by time-resolved diffuse near-infrared spectroscopy. , 2011, , .		2
124	First in vivo spectral characterization of breast up to 1300 nm. , 2011, , .		1
125	Role of collagen scattering for in vivo tissue characterization. , 2010, , .		3
126	A method to assess the scattering-free absorption properties of nanostructured materials. , 2010, , .		0

8

#	Article	IF	CITATIONS
127	Spectral distortions due to a finite spectral bandwidth light source in time-resolved diffuse spectroscopy. , 2010, , .		0
128	Diffuse optical spectroscopy of breast tissue extended to 1100â€,nm. Journal of Biomedical Optics, 2009, 14, 054030.	2.6	65
129	Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy. Applied Optics, 2009, 48, B87.	2.1	25
130	Bandpass Effects in Time-Resolved Diffuse Spectroscopy. Applied Spectroscopy, 2009, 63, 48-56.	2.2	23
131	Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths. , 2009, , .		5
132	Effects of a finite spectral bandwidth light source in time-resolved diffuse spectroscopy. Proceedings of SPIE, 2009, , .	0.8	0
133	Time-Resolved Optical Spectroscopy of Wood. Applied Spectroscopy, 2008, 62, 569-574.	2.2	34
134	A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces. Review of Scientific Instruments, 2008, 79, 086112.	1.3	38
135	Clinically compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth. , 2008, , .		1
136	CW and Time Domain Methods to Prepare Accurately Calibrated Liquid Diffusive Phantoms at NIR Wavelengths. , 2008, , .		0
137	Time-resolved diffuse optical spectroscopy of wood. , 2007, 6633, 346.		2
138	CW and time domain procedures for accurate calibration of optical properties of liquid diffusive media at NIR wavelengths. Proceedings of SPIE, 2007, , .	0.8	0
139	Time-resolved diffuse optical spectroscopy of small tissue samples. Proceedings of SPIE, 2007, , .	0.8	0
140	Time-resolved diffuse optical spectroscopy of small tissue samples. Optics Express, 2007, 15, 3301.	3.4	22
141	Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method. Optics Express, 2007, 15, 6589.	3.4	64
142	Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy. Optics Express, 2007, 15, 14482.	3.4	52
143	Optical Characterisation of Bone Tissue for Diffusion Optical Tomography Applied to Skeletal Implants. , 2007, , .		1
144	Enlarged Field of View in Spatially Modulated Selective Volume Illumination Microscopy. Microscopy and Microanalysis, 0, , 1-10.	0.4	0