List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1999-2049.	2.7	10,272
2	Cloudnet. Bulletin of the American Meteorological Society, 2007, 88, 883-898.	3.3	477
3	The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bulletin of the American Meteorological Society, 2015, 96, 1311-1332.	3.3	443
4	Combined CloudSat ALIPSOâ€MODIS retrievals of the properties of ice clouds. Journal of Geophysical Research, 2010, 115, .	3.3	295
5	The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model. Journal of Applied Meteorology and Climatology, 2006, 45, 301-317.	1.5	229
6	A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. Journal of Geophysical Research, 2008, 113, .	3.3	217
7	Deriving cloud overlap statistics from radar. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2903-2909.	2.7	207
8	Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1997-2017.	2.7	193
9	Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2315-2339.	2.7	170
10	A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1652-1664.	1.3	158
11	A Technique for Autocalibration of Cloud Lidar. Journal of Atmospheric and Oceanic Technology, 2004, 21, 777-786.	1.3	135
12	Vertical velocity variance and skewness in clear and cloudâ€ŧopped boundary layers as revealed by Doppler lidar. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 635-643.	2.7	131
13	Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar. Journal of Applied Meteorology and Climatology, 2005, 44, 14-27.	1.7	126
14	Fast Reverse-Mode Automatic Differentiation using Expression Templates in C++. ACM Transactions on Mathematical Software, 2014, 40, 1-16.	2.9	126
15	Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation. Journal of Applied Meteorology and Climatology, 2012, 51, 655-671.	1.5	124
16	Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment. Bulletin of the American Meteorological Society, 2015, 96, 419-440.	3.3	117
17	Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 451-476.	2.7	115
18	Toward understanding of differences in current cloud retrievals of ARM groundâ€based measurements. Journal of Geophysical Research, 2012, 117, .	3.3	107

ROBIN HOGAN

#	Article	IF	CITATIONS
19	Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2089-2116.	2.7	101
20	Equitability Revisited: Why the "Equitable Threat Score―Is Not Equitable. Weather and Forecasting, 2010, 25, 710-726.	1.4	101
21	Mixingâ€length controls on highâ€resolution simulations of convective storms. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 272-284.	2.7	100
22	Modelling the diurnal cycle of tropical convection across the â€~grey zone'. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 491-499.	2.7	99
23	Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 EyjafjallajA¶kull eruption using lidar observations and NAME simulations. Journal of Geophysical Research, 2011, 116, .	3.3	93
24	A Flexible and Efficient Radiation Scheme for the ECMWF Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 1990-2008.	3.8	93
25	Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data. Journal of Applied Meteorology and Climatology, 2008, 47, 135-163.	1.5	91
26	Comparison of ECMWF Winter-Season Cloud Fraction with Radar-Derived Values. Journal of Applied Meteorology and Climatology, 2001, 40, 513-525.	1.7	89
27	Towards processâ€level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 408-422.	2.7	89
28	The Capacitance of Pristine Ice Crystals and Aggregate Snowflakes. Journals of the Atmospheric Sciences, 2008, 65, 206-219.	1.7	87
29	Verification of cloudâ€fraction forecasts. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1494-1511.	2.7	82
30	Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 260-276.	2.7	81
31	Stratocumulus Liquid Water Content from Dual-Wavelength Radar. Journal of Atmospheric and Oceanic Technology, 2005, 22, 1207-1218.	1.3	79
32	Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation. Journals of the Atmospheric Sciences, 2008, 65, 3636-3651.	1.7	76
33	From CloudSat ALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radarâ€idar observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7962-7981.	3.3	75
34	Parameterizing Ice Cloud Inhomogeneity and the Overlap of Inhomogeneities Using Cloud Radar Data. Journals of the Atmospheric Sciences, 2003, 60, 756-767.	1.7	73
35	Measuring Crystal Size in Cirrus Using 35- and 94-GHz Radars. Journal of Atmospheric and Oceanic Technology, 2000, 17, 27-37.	1.3	72
36	Fast approximate calculation of multiply scattered lidar returns. Applied Optics, 2006, 45, 5984.	2.1	72

#	Article	IF	CITATIONS
37	Equation for the Microwave Backscatter Cross Section of Aggregate Snowflakes Using the Self-Similar Rayleigh–Gans Approximation. Journals of the Atmospheric Sciences, 2014, 71, 3292-3301.	1.7	71
38	Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	70
39	The DYMECS Project: A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models. Bulletin of the American Meteorological Society, 2015, 96, 939-951.	3.3	70
40	A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2585-2608.	2.7	69
41	Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method. Journals of the Atmospheric Sciences, 2008, 65, 3621-3635.	1.7	69
42	A 3D cloud onstruction algorithm for the EarthCARE satellite mission. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1042-1058.	2.7	69
43	Multiple-scattering in radar systems: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 917-947.	2.3	68
44	Tripleclouds: An Efficient Method for Representing Horizontal Cloud Inhomogeneity in 1D Radiation Schemes by Using Three Regions at Each Height. Journal of Climate, 2008, 21, 2352-2370.	3.2	64
45	Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2117-2134.	2.7	63
46	Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part I: Review and parametrization. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1191-1204.	2.7	63
47	Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 1877-1904.	2.7	61
48	A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODIS. Journal of Applied Meteorology and Climatology, 2011, 50, 1952-1969.	1.5	60
49	The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy. Journal of Applied Meteorology and Climatology, 2005, 44, 860-875.	1.7	59
50	Normalized particle size distribution for remote sensing application. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4204-4227.	3.3	57
51	Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 2064-2078.	2.7	55
52	The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	51
53	Retrievals of Riming and Snow Density From Vertically Pointing Doppler Radars. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,807.	3.3	49
54	Incorporating the Effects of 3D Radiative Transfer in the Presence of Clouds into Two-Stream Multilayer Radiation Schemes. Journals of the Atmospheric Sciences, 2013, 70, 708-724.	1.7	44

#	Article	IF	CITATIONS
55	A Variational Scheme for Retrieving Rainfall Rate and Hail Reflectivity Fraction from Polarization Radar. Journal of Applied Meteorology and Climatology, 2007, 46, 1544-1564.	1.5	43
56	Calculating the millimetreâ€wave scattering phase function of snowflakes using the selfâ€similar Rayleigh–Gans Approximation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 834-844.	2.7	43
57	Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part II: Evaluation and Parameterizations of Ensemble Ice Particle Sedimentation Velocities. Journals of the Atmospheric Sciences, 2007, 64, 1068-1088.	1.7	41
58	A Variational Approach to Retrieve Rain Rate by Combining Information from Rain Gauges, Radars, and Microwave Links. Journal of Hydrometeorology, 2013, 14, 1897-1909.	1.9	41
59	The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow. Atmospheric Measurement Techniques, 2019, 12, 4993-5018.	3.1	41
60	The Potential of Spaceborne Dual-Wavelength Radar to Make Global Measurements of Cirrus Clouds. Journal of Atmospheric and Oceanic Technology, 1999, 16, 518-531.	1.3	40
61	Representing 3â€D cloud radiation effects in twoâ€stream schemes: 2. Matrix formulation and broadband evaluation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8583-8599.	3.3	39
62	Mean radiant temperature from global-scale numerical weather prediction models. International Journal of Biometeorology, 2020, 64, 1233-1245.	3.0	39
63	Using Continuous Ground-Based Radar and Lidar Measurements for Evaluating the Representation of Clouds in Four Operational Models. Journal of Applied Meteorology and Climatology, 2010, 49, 1971-1991.	1.5	38
64	Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4136-4148.	3.3	38
65	Retrospective cloud determinations from surface solar radiation measurements. Atmospheric Research, 2008, 90, 54-62.	4.1	37
66	Simulations of the glaciation of a frontal mixed-phase cloud with the Explicit Microphysics Model. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 1351-1371.	2.7	36
67	Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. Journal of Geophysical Research, 2010, 115, .	3.3	36
68	The Three-Dimensional Morphology of Simulated and Observed Convective Storms over Southern England. Monthly Weather Review, 2014, 142, 3264-3283.	1.4	36
69	Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar. Journals of the Atmospheric Sciences, 2005, 62, 2248-2260.	1.7	36
70	A method to diagnose boundaryâ€layer type using Doppler lidar. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1681-1693.	2.7	35
71	Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances. Atmospheric Measurement Techniques, 2015, 8, 2663-2683.	3.1	35
72	Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part II: The global effects. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1205-1215.	2.7	34

#	Article	IF	CITATIONS
73	Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1562-1575.	1.3	33
74	Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmospheric Measurement Techniques, 2010, 3, 671-681.	3.1	33
75	Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network. Atmospheric Chemistry and Physics, 2012, 12, 10313-10329.	4.9	33
76	Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: A three-component atmosphere approach. Journal of Geophysical Research, 2011, 116, .	3.3	32
77	Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 2. Comparison with IR radiometer and in situ measurements of ice clouds. Journal of Geophysical Research, 2001, 106, 27449-27464.	3.3	30
78	Absolute Calibration of 94/95-GHz Radars Using Rain. Journal of Atmospheric and Oceanic Technology, 2003, 20, 572-580.	1.3	28
79	Using mesoscale model winds for correcting wind-drift errors in radar estimates of surface rainfall. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 2105-2123.	2.7	28
80	The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: an evaluation with CloudSat. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3312-3324.	2.7	28
81	The Numerics of Physical Parametrization in the ECMWF Model. Frontiers in Earth Science, 2018, 6, .	1.8	28
82	Accelerating Radiation Computations for Dynamical Models With Targeted Machine Learning and Code Optimization. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002226.	3.8	28
83	A novel ensemble method for retrieving properties of warm cloud in 3-D using ground-based scanning radar and zenith radiances. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,912-10,930.	3.3	27
84	Representing 3â€Ð cloud radiation effects in twoâ€stream schemes: 1. Longwave considerations and effective cloud edge length. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8567-8582.	3.3	27
85	Why are mixedâ€phase altocumulus clouds poorly predicted by largeâ€scale models? Part 1. Physical processes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9903-9926.	3.3	26
86	Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 77-88.	2.7	25
87	Independent Evaluation of the Ability of Spaceborne Radar and Lidar to Retrieve the Microphysical and Radiative Properties of Ice Clouds. Journal of Atmospheric and Oceanic Technology, 2006, 23, 211-227.	1.3	24
88	Evaluation of a large-eddy model simulation of a mixed-phase altocumulus cloud using microwave radiometer, lidar and Doppler radar data. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1693-1715.	2.7	23
89	Treatment of model uncertainty from radiation by the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme and associated revisions in the ECMWF ensembles. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 75-89.	2.7	22
90	A Sensitivity Study of the Effect of Horizontal Photon Transport on the Radiative Forcing of Contrails. Journals of the Atmospheric Sciences, 2007, 64, 1706-1716.	1.7	21

#	Article	IF	CITATIONS
91	Mitigating errors in surface temperature forecasts using approximate radiation updates. Journal of Advances in Modeling Earth Systems, 2015, 7, 836-853.	3.8	21
92	Improved rain rate and drop size retrievals from airborne Doppler radar. Atmospheric Chemistry and Physics, 2017, 17, 11567-11589.	4.9	21
93	Entrapment: An Important Mechanism to Explain the Shortwave 3D Radiative Effect of Clouds. Journals of the Atmospheric Sciences, 2019, 2019, 48-66.	1.7	21
94	The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function. Journals of the Atmospheric Sciences, 2010, 67, 2086-2100.	1.7	20
95	Parametrizing the horizontal inhomogeneity of ice water content using CloudSat data products. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1784-1793.	2.7	20
96	Impact of improved representation of horizontal and vertical cloud structure in a climate model. Climate Dynamics, 2012, 38, 2365-2376.	3.8	20
97	Sensitivity of the Brewer–Dobson Circulation and Polar Vortex Variability to Parameterized Nonorographic Gravity Wave Drag in a High-Resolution Atmospheric Model. Journals of the Atmospheric Sciences, 2018, 75, 1525-1543.	1.7	20
98	Effect of solar zenith angle specification in models on mean shortwave fluxes and stratospheric temperatures. Geophysical Research Letters, 2016, 43, 482-488.	4.0	19
99	In Situ Atmospheric Turbulence Measurement Using the Terrestrial Magnetic Field—A Compass for a Radiosonde. Journal of Atmospheric and Oceanic Technology, 2006, 23, 517-523.	1.3	18
100	Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1. Geoscientific Model Development, 2018, 11, 339-350.	3.6	17
101	Numerical modelling of mixed-phase frontal clouds observed during the CWVC project. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1677-1693.	2.7	16
102	Use of a Lidar Forward Model for Global Comparisons of Cloud Fraction between the ICESat Lidar and the ECMWF Model. Monthly Weather Review, 2008, 136, 3742-3759.	1.4	16
103	A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple-Field-of-View Lidar. Journal of Applied Meteorology and Climatology, 2012, 51, 350-365.	1.5	16
104	Theory and observations of ice particle evolution in cirrus using Doppler radar: Evidence for aggregation. Geophysical Research Letters, 2007, 34, .	4.0	15
105	Why are mixedâ€phase altocumulus clouds poorly predicted by largeâ€scale models? Part 2. Vertical resolution sensitivity and parameterization. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9927-9944.	3.3	15
106	Evaluating and improving the treatment of gases in radiation schemes: the Correlated K-Distribution Model Intercomparison Project (CKDMIP). Geoscientific Model Development, 2020, 13, 6501-6521.	3.6	15
107	3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9153-9167.	3.3	14
108	Convective updraught evaluation in highâ€resolution NWP simulations using singleâ€Doppler radar measurements. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3177-3189.	2.7	14

ROBIN HOGAN

#	Article	IF	CITATIONS
109	Flexible Treatment of Radiative Transfer in Complex Urban Canopies for Use in Weather and Climate Models. Boundary-Layer Meteorology, 2019, 173, 53-78.	2.3	12
110	Machine Learning Emulation of 3D Cloud Radiative Effects. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	12
111	Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 865-883.	2.7	11
112	Evaluation of boundaryâ€layer type in a weather forecast model utilizing longâ€ŧerm Doppler lidar observations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1345-1353.	2.7	11
113	Comparison between ATSRâ€2 stereo, MOS O2â€A band and groundâ€based cloud top heights. International Journal of Remote Sensing, 2007, 28, 1969-1987.	2.9	10
114	An Urban Scheme for the ECMWF Integrated Forecasting System: Singleâ€Column and Global Offline Application. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002375.	3.8	10
115	Threeâ€dimensional radiative transfer in midlatitude cirrus clouds. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 199-215.	2.7	9
116	Evaluating forecasts of the evolution of the cloudy boundary layer using diurnal composites of radar and lidar observations. Geophysical Research Letters, 2009, 36, .	4.0	9
117	Parallel Developments and Formal Collaboration between European Atmospheric Profiling Observatories and the U.S. ARM Research Program. Meteorological Monographs, 2016, 57, 29.1-29.34.	5.0	9
118	Comparison of balloon-carried atmospheric motion sensors with Doppler lidar turbulence measurements. Review of Scientific Instruments, 2009, 80, 026108.	1.3	8
119	An Exponential Model of Urban Geometry for Use in Radiative Transfer Applications. Boundary-Layer Meteorology, 2019, 170, 357-372.	2.3	8
120	Parametrizing cloud geometry and its application in a subgrid cloudâ€edge erosion scheme. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1651-1667.	2.7	8
121	Processâ€Based Climate Model Development Harnessing Machine Learning: III. The Representation of Cumulus Geometry and Their 3D Radiative Effects. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002423.	3.8	8
122	Copula-based synthetic data augmentation for machine-learning emulators. Geoscientific Model Development, 2021, 14, 5205-5215.	3.6	8
123	A three-dimensional magnetometer for motion sensing of a balloon-carried atmospheric measurement package. Review of Scientific Instruments, 2007, 78, 124501.	1.3	7
124	The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements. Atmospheric Chemistry and Physics, 2014, 14, 8389-8401.	4.9	7
125	Understanding Global Model Systematic Shortwave Radiation Errors in Subtropical Marine Boundary Layer Cloud Regimes. Journal of Advances in Modeling Earth Systems, 2018, 10, 2042-2060.	3.8	7
126	Evidence for the 3D Radiative Effects of Boundaryâ€Layer Clouds From Observations of Direct and Diffuse Surface Solar Fluxes. Geophysical Research Letters, 2021, 48, e2021GL093369.	4.0	6

#	Article	IF	CITATIONS
127	Deriving cloud overlap statistics from radar. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2903-2909.	2.7	6
128	A benchmark for testing the accuracy and computational cost of shortwave top-of-atmosphere reflectance calculations in clear-sky aerosol-laden atmospheres. Geoscientific Model Development, 2019, 12, 805-827.	3.6	5
129	A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future. Atmospheric Chemistry and Physics, 2022, 22, 4277-4302.	4.9	5
130	Evaluation of the SPARTACUS-Urban Radiation Model for Vertically Resolved Shortwave Radiation in Urban Areas. Boundary-Layer Meteorology, 2022, 184, 301-331.	2.3	5
131	Using Doppler radar with a simple explicit microphysics model to diagnose problems with ice sublimation depthâ€scales in forecast models. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2094-2108.	2.7	4
132	Machine Learning Emulation of Urban Land Surface Processes. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	4
133	Asperitas - a newly identified cloud supplementary feature. Weather, 2017, 72, 132-141.	0.7	3
134	Evaluation of ECMWF Radiation Scheme Using Aircraft Observations of Spectral Irradiance above Clouds. Journals of the Atmospheric Sciences, 2020, 77, 2665-2685.	1.7	3
135	A One-Dimensional Finite-Element Boundary-Layer Model with a Vertical Adaptive Grid. Boundary-Layer Meteorology, 2008, 128, 459-472.	2.3	2
136	Scientific aspects of the Earth clouds, Aerosols, and Radiation Explorer (EarthCARE) mission. AIP Conference Proceedings, 2013, , .	0.4	2
137	Assessing vertical resolution requirements for operational weather radar data quality. Atmospheric Science Letters, 2006, 7, 9-14.	1.9	1
138	Estimating mass and momentum fluxes in a line of cumulonimbus using a single highâ€resolution Doppler radar. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1127-1141.	2.7	1
139	Erratum to †Threeâ€dimensional radiative transfer in midlatitude cirrus clouds'. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1065-1066.	2.7	Ο
140	Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type. , 2009, , .		0
141	Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment. Bulletin of the American Meteorological Society, 2016, 2016, 419-440	3.3	0