
Kevin Welsher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Information-Efficient, Off-Center Sampling Results in Improved Precision in 3D Single-Particle Tracking Microscopy. Entropy, 2021, 23, 498.	1.1	12
2	Innenrücktitelbild: Particleâ€byâ€Particle Inâ€Situ Characterization of the Protein Corona via Realâ€Time 3D Singleâ€Particleâ€Tracking Spectroscopy (Angew. Chem. 41/2021). Angewandte Chemie, 2021, 133, 22767-227	76 7 .6	0
3	Particleâ€byâ€Particle Inâ€Situ Characterization of the Protein Corona via Realâ€Time 3D Singleâ€Particleâ€Tracking Spectroscopy**. Angewandte Chemie, 2021, 133, 22533-22541.	1.6	3
4	Particleâ€byâ€Particle Inâ€Situ Characterization of the Protein Corona via Realâ€Time 3D Singleâ€Particleâ€Tracking Spectroscopy**. Angewandte Chemie - International Edition, 2021, 60, 22359-22367.	7.2	16
5	Real-time 3D single molecule tracking. Nature Communications, 2020, 11, 3607.	5.8	63
6	Mapping solvation heterogeneity in live cells by hyperspectral stimulated Raman scattering microscopy. Journal of Chemical Physics, 2020, 152, 174201.	1.2	14
7	Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nature Communications, 2020, 11, 983.	5.8	221
8	An Adaptive Realâ€Time 3D Single Particle Tracking Method for Monitoring Viral First Contacts. Small, 2019, 15, e1903039.	5.2	21
9	Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules, 2019, 24, 2826.	1.7	40
10	Continuous focal translation enhances rate of point-scan volumetric microscopy. Optics Express, 2019, 27, 36241.	1.7	8
11	A Protocol for Real-time 3D Single Particle Tracking. Journal of Visualized Experiments, 2018, , .	0.2	7
12	Robust real-time 3D single-particle tracking using a dynamically moving laser spot. Optics Letters, 2017, 42, 2390.	1.7	49
13	Discovery of Protein- and DNA-Imperceptible Nanoparticle Hard Coating Using Gel-Based Reaction Tuning. Journal of the American Chemical Society, 2015, 137, 580-583.	6.6	27
14	Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy. Faraday Discussions, 2015, 184, 359-379.	1.6	13
15	Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nature Nanotechnology, 2014, 9, 198-203.	15.6	156
16	Model-free analysis of time-dependent single-molecule spectroscopy: Dynamics of biological macromolecules. , 2012, , .		1
17	Graphite-Coated Magnetic Nanoparticle Microarray for Few-Cells Enrichment and Detection. ACS Nano, 2012, 6, 1094-1101.	7.3	57
18	Nearâ€Infraredâ€Fluorescenceâ€Enhanced Molecular Imaging of Live Cells on Gold Substrates. Angewandte Chemie - International Edition, 2011, 50, 4644-4648.	7.2	78

KEVIN WELSHER

#	Article	IF	CITATIONS
19	Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8943-8948.	3.3	817
20	High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3, 779-793.	5.8	475
21	Optical Properties of Single-Walled Carbon Nanotubes Separated in a Density Gradient: Length, Bundling, and Aromatic Stacking Effects. Journal of Physical Chemistry C, 2010, 114, 19569-19575.	1.5	49
22	Metal-Enhanced Fluorescence of Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 15920-15923.	6.6	105
23	Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Research, 2009, 2, 85-120.	5.8	1,515
24	A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4, 773-780.	15.6	1,068
25	Phospholipidâ^'Dextran with a Single Coupling Point: A Useful Amphiphile for Functionalization of Nanomaterials. Journal of the American Chemical Society, 2009, 131, 289-296.	6.6	83
26	Optical Characterizations and Electronic Devices of Nearly Pure (10,5) Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 2454-2455.	6.6	63
27	PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation. Journal of the American Chemical Society, 2009, 131, 4783-4787.	6.6	548
28	Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1, 203-212.	5.8	3,043
29	Selective Probing and Imaging of Cells with Single Walled Carbon Nanotubes as Near-Infrared Fluorescent Molecules. Nano Letters, 2008, 8, 586-590.	4.5	457
30	Optical Properties of Ultrashort Semiconducting Single-Walled Carbon Nanotube Capsules Down to Sub-10 nm. Journal of the American Chemical Society, 2008, 130, 6551-6555.	6.6	142
31	Noncovalent Functionalization of Carbon Nanotubes by Fluoresceinâ `Polyethylene Glycol:Â Supramolecular Conjugates with pH-Dependent Absorbance and Fluorescence. Journal of the American Chemical Society, 2007, 129, 2448-2449.	6.6	288
32	Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection. Journal of the American Chemical Society, 2007, 129, 15770-15771.	6.6	282