List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 2010, 26, 16096-16102.	1.6	665
2	Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Journal of the American Chemical Society, 2016, 138, 4201-4209.	6.6	537
3	Free-Standing <i>T</i> -Nb ₂ O ₅ /Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano, 2015, 9, 11200-11208.	7.3	349
4	Kinetically-enhanced polysulfide redox reactions by Nb ₂ O ₅ nanocrystals for high-rate lithium–sulfur battery. Energy and Environmental Science, 2016, 9, 3230-3239.	15.6	328
5	High Efficiency Immobilization of Sulfur on Nitrogen-Enriched Mesoporous Carbons for Li–S Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5630-5638.	4.0	305
6	Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy, 2016, 28, 495-505.	8.2	247
7	Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons. Journal of Physical Chemistry C, 2013, 117, 8318-8328.	1.5	237
8	Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. Journal of Power Sources, 2011, 196, 3887-3893.	4.0	234
9	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	3.2	210
10	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving Highâ€Capacity, Long Lifetime Liâ€S Batteries. Advanced Science, 2018, 5, 1800502.	5.6	210
11	Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. Journal of Physical Chemistry Letters, 2017, 8, 559-564.	2.1	193
12	A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. Journal of Materials Chemistry A, 2013, 1, 13283.	5.2	189
13	Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.	2.1	169
14	High-power and high-energy asymmetric supercapacitors based on Li ⁺ -intercalation into a T-Nb ₂ O ₅ /graphene pseudocapacitive electrode. Journal of Materials Chemistry A, 2014, 2, 17962-17970.	5.2	153
15	Nitrogen-Rich Mesoporous Carbons: Highly Efficient, Regenerable Metal-Free Catalysts for Low-Temperature Oxidation of H ₂ S. ACS Catalysis, 2013, 3, 862-870.	5.5	150
16	Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon, 2014, 77, 155-164.	5.4	148
17	Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Materials, 2020, 29, 9-16.	9.5	139
18	Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. Journal of Colloid and Interface Science, 2016, 462, 200-207.	5.0	131

#	Article	IF	CITATIONS
19	Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons. Journal of Environmental Sciences, 2013, 25, 124-132.	3.2	127
20	Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres. Chemical Communications, 2013, 49, 3763.	2.2	124
21	Surfactant promoted solid amine sorbents for CO ₂ capture. Energy and Environmental Science, 2012, 5, 5742-5749.	15.6	123
22	Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors. Scientific Reports, 2016, 6, 21177.	1.6	123
23	Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon, 2016, 108, 551-560.	5.4	119
24	Direct Capture of Low-Concentration CO ₂ on Mesoporous Carbon-Supported Solid Amine Adsorbents at Ambient Temperature. Industrial & Engineering Chemistry Research, 2015, 54, 5319-5327.	1.8	113
25	The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. Electrochemistry Communications, 2008, 10, 1809-1811.	2.3	110
26	Macroscopic and Mechanically Robust Hollow Carbon Spheres with Superior Oil Adsorption and Lightâ€ŧoâ€Heat Evaporation Properties. Advanced Functional Materials, 2016, 26, 5368-5375.	7.8	108
27	High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor. Carbon, 2017, 118, 699-708.	5.4	104
28	General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nature Communications, 2022, 13, 471.	5.8	96
29	Sulfur film sandwiched between few-layered MoS ₂ electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 5899-5909.	5.2	95
30	Colloidal Synthesis of Silicon–Carbon Composite Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 10780-10785.	7.2	94
31	Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Materials, 2015, 1, 1-8.	9.5	92
32	Chemically Bonding NiFe-LDH Nanosheets on rGO for Superior Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 35977-35986.	4.0	88
33	Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture. Applied Energy, 2016, 168, 282-290.	5.1	81
34	Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature. Carbon, 2016, 96, 608-615.	5.4	80
35	Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes. Journal of Power Sources, 2016, 309, 42-49.	4.0	78
36	Role of Pore Structure of Activated Carbon Fibers in the Catalytic Oxidation of H ₂ S. Industrial & Engineering Chemistry Research, 2010, 49, 3152-3159.	1.8	75

#	Article	IF	CITATIONS
37	Application of polyethylenimineâ€impregnated solid adsorbents for direct capture of lowâ€concentration CO ₂ . AICHE Journal, 2015, 61, 972-980.	1.8	73
38	Electrochemical surface oxidation of carbon nanofibers. Carbon, 2011, 49, 96-105.	5.4	72
39	Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Materials, 2016, 5, 171-179.	9.5	72
40	High-mechanical-strength polyimide aerogels crosslinked with 4, 4′-oxydianiline-functionalized carbon nanotubes. Carbon, 2019, 144, 24-31.	5.4	72
41	Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon, 2008, 46, 1259-1262.	5.4	67
42	Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. Journal of Power Sources, 2015, 274, 121-129.	4.0	66
43	Mesoporous Carbon-Supported Solid Amine Sorbents for Low-Temperature Carbon Dioxide Capture. Industrial & Engineering Chemistry Research, 2013, 52, 5437-5444.	1.8	65
44	Aqueous Al-Ion Supercapacitor with V ₂ O ₅ Mesoporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 15573-15580.	4.0	64
45	Facile synthesis and superior anodic performance of ultrafine SnO2-containing nanocomposites. Electrochimica Acta, 2009, 54, 5782-5788.	2.6	63
46	Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation. Chemical Communications, 2009, , 3898.	2.2	63
47	Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core–Shell Nanocomposites for Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 4817-4825.	4.0	62
48	Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes. Journal of Colloid and Interface Science, 2017, 488, 207-217.	5.0	62
49	Poly(ethyleneimine)-Loaded Silica Monolith with a Hierarchical Pore Structure for H ₂ S Adsorptive Removal. Industrial & Engineering Chemistry Research, 2010, 49, 11408-11414.	1.8	60
50	Enhanced Electrochemical Performance of Hydrous RuO ₂ /Mesoporous Carbon Nanocomposites via Nitrogen Doping. ACS Applied Materials & Interfaces, 2014, 6, 9751-9759.	4.0	59
51	Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel. Applied Catalysis B: Environmental, 2020, 262, 118266.	10.8	59
52	Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes. Journal of Colloid and Interface Science, 2009, 331, 40-46.	5.0	58
53	Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 147, 111217.	8.2	57
54	Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte. New Carbon Materials, 2007, 22, 153-158.	2.9	55

#	Article	IF	CITATIONS
55	Structural features of polyacrylonitrile-based carbon fibers. Journal of Materials Science, 2012, 47, 919-928.	1.7	54
56	Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries. Electrochimica Acta, 2016, 188, 385-392.	2.6	54
57	Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2019, 370, 556-564.	6.6	54
58	Ion Transport Behavior in Triblock Copolymer-Templated Ordered Mesoporous Carbons with Different Pore Symmetries. Journal of Physical Chemistry C, 2010, 114, 18745-18751.	1.5	53
59	Direct trapping and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries. Carbon, 2021, 172, 260-271.	5.4	53
60	Unveiling the Nature of Room-Temperature O ₂ Activation and O ₂ ^{•–} Enrichment on MgO-Loaded Porous Carbons with Efficient H ₂ S Oxidation. ACS Catalysis, 2021, 11, 5974-5983.	5.5	53
61	Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template. Materials Chemistry and Physics, 2015, 149-150, 495-504.	2.0	52
62	Polycation Binders: An Effective Approach toward Lithium Polysulfide Sequestration in Li–S Batteries. ACS Energy Letters, 2017, 2, 2591-2597.	8.8	51
63	Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li–S battery. Journal of Materials Chemistry A, 2019, 7, 6250-6258.	5.2	50
64	Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries. Chemical Engineering Journal, 2020, 388, 124258.	6.6	50
65	Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TC-FTIR and ReaxFF molecular dynamics simulations. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105222.	2.6	50
66	Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334, 714-724.	6.6	48
67	Fabricating a high-energy-density supercapacitor with asymmetric aqueous redox additive electrolytes and free-standing activated-carbon-felt electrodes. Chemical Engineering Journal, 2019, 363, 183-191.	6.6	48
68	Alkaline carbon nanotubes as effective catalysts for H2S oxidation. Carbon, 2011, 49, 3773-3780.	5.4	47
69	Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor. Journal of Colloid and Interface Science, 2018, 531, 513-522.	5.0	45
70	Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping. Electrochimica Acta, 2015, 153, 140-148.	2.6	44
71	Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization. Applied Catalysis B: Environmental, 2021, 280, 119444.	10.8	42
72	Suspension assisted synthesis of triblock copolymer-templated ordered mesoporous carbon spheres with controlled particle size. Chemical Communications, 2008, , 2647.	2.2	39

#	Article	IF	CITATIONS
73	Graphitization behaviour of chemically derived graphene sheets. Nanoscale, 2011, 3, 3652.	2.8	39
74	Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels. Microporous and Mesoporous Materials, 2011, 142, 641-648.	2.2	39
75	Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres. Chemical Engineering Journal, 2016, 293, 243-251.	6.6	37
76	Colloidal Synthesis of Silicon–Carbon Composite Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 10920-10925.	1.6	36
77	Fiber Reinforced Polyimide Aerogel Composites with High Mechanical Strength for High Temperature Insulation. Macromolecular Materials and Engineering, 2019, 304, 1800676.	1.7	36
78	Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS ₂ nanowalled core–shell microspheres and their enhanced Li-storage performances. Nanoscale, 2015, 7, 13043-13050.	2.8	35
79	Constructing T-Nb2O5@Carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor. Journal of Power Sources, 2018, 396, 88-94.	4.0	35
80	Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chemical Communications, 2011, 47, 9429.	2.2	34
81	Synthesis and characterization of high-softening-point methylene-bridged pitches by visible light irradiation assisted free-radical bromination. Carbon, 2015, 95, 780-788.	5.4	34
82	Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization. Materials Chemistry and Physics, 2011, 129, 1035-1041.	2.0	33
83	Flexible carbon nanofiber sponges for highly efficient and recyclable oil absorption. RSC Advances, 2015, 5, 70025-70031.	1.7	33
84	Expediting polysulfide catalytic conversion for lithium–sulfur batteries <i>via in situ</i> implanted ultrafine Fe ₃ O ₄ nanocrystals in carbon nanospheres. Journal of Materials Chemistry A, 2020, 8, 24117-24127.	5.2	33
85	A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H ₂ S Oxidation at Room Temperature. ACS Applied Materials & Interfaces, 2017, 9, 2477-2484.	4.0	32
86	Bottom-Up Catalytic Approach towards Nitrogen-Enriched Mesoporous Carbons/Sulfur Composites for Superior Li-S Cathodes. Scientific Reports, 2013, 3, 2823.	1.6	31
87	Controllable synthesis of hierarchical mesoporous/microporous nitrogen-rich polymer networks for CO ₂ and Cr(<scp>vi</scp>) ion adsorption. RSC Advances, 2014, 4, 16224-16232.	1.7	30
88	Capacitive matching of pore size and ion size in the negative and positive electrodes for supercapacitors. Electrochimica Acta, 2011, 56, 9248-9256.	2.6	29
89	Organic Amine-Mediated Synthesis of Polymer and Carbon Microspheres: Mechanism Insight and Energy-Related Applications. ACS Applied Materials & Interfaces, 2016, 8, 4851-4861.	4.0	29
90	Three-dimensional Mn–Cu–Ce ternary mixed oxide networks prepared by polymer-assisted deposition for HCHO catalytic oxidation. Catalysis Science and Technology, 2018, 8, 2740-2749.	2.1	29

#	Article	IF	CITATIONS
91	<i>T</i> -Nb ₂ O ₅ nanoparticle enabled pseudocapacitance with fast Li-ion intercalation. Nanoscale, 2018, 10, 14165-14170.	2.8	29
92	Controllable Nitrogen Doping of High-Surface-Area Microporous Carbons Synthesized from an Organic–Inorganic Sol–Gel Approach for Li–S Cathodes. ACS Applied Materials & Interfaces, 2015, 7, 21188-21197.	4.0	28
93	Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation. Industrial & Engineering Chemistry Research, 2021, 60, 1241-1249.	1.8	28
94	Ultrahigh-strength carbon aerogels for high temperature thermal insulation. Journal of Colloid and Interface Science, 2022, 609, 667-675.	5.0	28
95	Ion Intercalation into Graphitic Carbon with a Low Surface Area for High Energy Density Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A1486-A1494.	1.3	27
96	Colloidal dispersion of Nb2O5/reduced graphene oxide nanocomposites as functional coating layer for polysulfide shuttle suppression and lithium anode protection of Li-S battery. Journal of Colloid and Interface Science, 2020, 566, 11-20.	5.0	27
97	Preparation and microstructure control of carbon aerogels produced using m-cresol mediated sol-gel polymerization of phenol and furfural. New Carbon Materials, 2008, 23, 165-170.	2.9	26
98	A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 14910-14918.	5.2	26
99	Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries. Chemical Engineering Journal, 2021, 411, 128504.	6.6	26
100	Oxygen-vacancy-rich Fe ₃ O ₄ /carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. Journal of Materials Chemistry A, 2022, 10, 8479-8490.	5.2	26
101	Effect of template and precursor chemistry on pore architectures of triblock copolymer-templated mesoporous carbons. Microporous and Mesoporous Materials, 2009, 121, 58-66.	2.2	24
102	Fabrication of Uniform Graphene Discs <i>via</i> Transversal Cutting of Carbon Nanofibers. ACS Nano, 2011, 5, 6254-6261.	7.3	24
103	Asymmetric capacitance response from the chemical characteristics of activated carbons in KOH electrolyte. Journal of Electroanalytical Chemistry, 2011, 659, 161-167.	1.9	24
104	Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. New Carbon Materials, 2013, 28, 47-54.	2.9	24
105	Tunable Production of Jet-Fuel Range Alkanes and Aromatics by Catalytic Pyrolysis of LDPE over Biomass-Derived Activated Carbons. Industrial & Engineering Chemistry Research, 2020, 59, 17451-17461.	1.8	23
106	Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal. Journal of Colloid and Interface Science, 2018, 510, 77-85.	5.0	22
107	A lithiated organic nanofiber-reinforced composite polymer electrolyte enabling Li-ion conduction highways for solid-state lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 23882-23890.	5.2	22
108	Simultaneous micropore development and nitrogen doping of ordered mesoporous carbons for enhanced supercapacitor and Li-S cathode performance. Electrochimica Acta, 2016, 214, 231-240.	2.6	21

#	Article	IF	CITATIONS
109	Homogenously dispersed ultrasmall niobium(V) oxide nanoparticles enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte. Journal of Colloid and Interface Science, 2021, 586, 855-865.	5.0	21
110	Hexagonal Rodlike Cu-MOF-74-Derived Filler-Reinforced Composite Polymer Electrolyte for High-Performance Solid-State Lithium Batteries. ACS Applied Energy Materials, 2022, 5, 1095-1105.	2.5	21
111	Large-scale synthesis of mesoporous carbon microspheres with controllable structure and nitrogen doping using a spray drying method. RSC Advances, 2014, 4, 62662-62665.	1.7	20
112	Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO ₂ capture. RSC Advances, 2014, 4, 61456-61464.	1.7	19
113	Highly efficient removal of bulky tannic acid by millimeterâ€sized nitrogenâ€doped mesoporous carbon beads. AICHE Journal, 2017, 63, 3016-3025.	1.8	19
114	Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes. Journal of Power Sources, 2017, 364, 182-190.	4.0	19
115	Kinetics and Mechanism Study of Low-Temperature Selective Catalytic Reduction of NO with Urea Supported on Pitch-Based Spherical Activated Carbon. Industrial & Engineering Chemistry Research, 2011, 50, 6017-6027.	1.8	18
116	Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochimica Acta, 2018, 269, 724-732.	2.6	18
117	Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18, 2673-2682.	1.2	17
118	Synthesis of ultrahigh-pore-volume carbon aerogels through a "reinforced-concrete―modified sol–gel process. Journal of Non-Crystalline Solids, 2011, 357, 232-235.	1.5	16
119	Flexible Ru/Graphene Aerogel with Switchable Surface Chemistry: Highly Efficient Catalyst for Roomâ€īemperature CO Oxidation. Advanced Materials Interfaces, 2016, 3, 1500711.	1.9	16
120	Scalable preparation of hollow polymer and carbon microspheres by spray drying and their application in low-density syntactic foam. Materials Chemistry and Physics, 2016, 181, 150-158.	2.0	15
121	Self-propelled nanoemulsion assembly of organosilane to the synthesis of high-surface-area hollow carbon spheres for enhanced energy storage. Chemical Engineering Journal, 2020, 400, 124973.	6.6	15
122	Molecular design of polymer precursors for controlling microstructure of organic and carbon aerogels. Journal of Non-Crystalline Solids, 2009, 355, 1252-1258.	1.5	14
123	Fabrication of hierarchical porous carbide-derived carbons by chlorination of mesoporous titanium carbides. New Carbon Materials, 2009, 24, 243-250.	2.9	14
124	Meso-channel Development in Graphitic Carbon Nanofibers with Various Structures. Chemistry of Materials, 2011, 23, 4141-4148.	3.2	14
125	Engineering the outermost surface of mesoporous carbon beads towards the broad-spectrum blood-cleansing application. Carbon, 2018, 130, 782-791.	5.4	14
126	Pt-NbC Composite as a Bifunctional Catalyst for Redox Transformation of Polysulfides in High-Rate-Performing Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 35008-35018.	4.0	13

#	Article	IF	CITATIONS
127	Mesoporous Carbon Beads Impregnated with Transition Metal Chlorides for Regenerative Removal of Ammonia in the Atmosphere. Industrial & Engineering Chemistry Research, 2017, 56, 3283-3290.	1.8	12
128	Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption. Journal of Colloid and Interface Science, 2022, 618, 259-269.	5.0	12
129	Multiple ionic conduction highways and good interfacial stability of ionic liquid-encapsulated cross-linked polymer electrolytes for lithium metal batteries. Journal of Power Sources, 2022, 543, 231848.	4.0	12
130	Thermo-catalytic conversion of waste plastics into surrogate fuels over spherical activated carbon of long-life durability. Waste Management, 2022, 148, 1-11.	3.7	11
131	Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process. RSC Advances, 2016, 6, 796-804.	1.7	10
132	Rapid Gas-Engineering to the Manufacture of Graphene-Like Mesoporous Carbon Nanosheets with a Large Aspect Ratio. ACS Applied Materials & Interfaces, 2020, 12, 47792-47801.	4.0	10
133	Promoting polysulfide redox kinetics by tuning the non-metallic p-band of Mo-based compounds. Journal of Materials Chemistry A, 2022, 10, 11477-11487.	5.2	10
134	Micro-fracture behaviors of needled short-chopped fiber reinforced phenolic aerogel composites based on in-situ X-ray micro-CT. Composites Communications, 2022, 33, 101224.	3.3	10
135	New concept of in situ carbide-derived carbon/xerogel nanocomposite materials for electrochemical capacitor. Materials Letters, 2011, 65, 1392-1395.	1.3	9
136	Significantly enhanced rate capability in supercapacitors using carbide-derived carbons electrode with superior microstructure. Journal of Solid State Electrochemistry, 2012, 16, 1263-1270.	1.2	9
137	Shapeâ€Customizable Macroâ€∤Microporous Carbon Monoliths for Structureâ€toâ€Functionality CO ₂ Adsorption and Novel Electrical Regeneration. Advanced Materials Technologies, 2017, 2, 1700088.	3.0	9
138	Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode. Electrochimica Acta, 2019, 302, 301-309.	2.6	9
139	Performance of high-temperature lightweight multilayer insulations. Applied Thermal Engineering, 2022, 211, 118436.	3.0	8
140	Synergistic action of Pt and Nb2O5 ultrafine nanoparticles for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chemical Engineering Journal, 2022, 430, 132714.	6.6	7
141	Design of a dual-bed catalyst system with microporous carbons and urea-supported mesoporous carbons for highly effective removal of NO _x at room temperature. RSC Advances, 2016, 6, 27272-27281.	1.7	6
142	In-situ anchoring sulfiphilic silica nanoparticles onto macro-mesoporous carbon framework for cost-effective Li-S cathodes. Chemical Engineering Journal, 2021, 406, 126781.	6.6	6
143	In Situ Formed Lithiophilic LixNbyO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 56498-56509.	4.0	6
144	Fabrication of monolithic carbon nanofiber/carbon composites. RSC Advances, 2016, 6, 6443-6450.	1.7	5

#	Article	IF	CITATIONS
145	Structural Units and Their Periodicity in Carbon Nanotubes. Small, 2010, 6, 2526-2529.	5.2	4
146	Dimensional control of tubular-type carbon nanofibers via pyrolytic carbon coating. Journal of Materials Science, 2017, 52, 5165-5178.	1.7	2
147	Scalable preparation of high-strength hierarchically porous carbon beads with bicontinuous macroporous network by solvent induced phase separation technique for NOx removal. Microporous and Mesoporous Materials, 2022, 330, 111620.	2.2	2
148	Structure Control of Ordered Mesoporous Carbon Spheres Prepared from Suspension-assist Evaporation-induced Self-assembly. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 571-576.	0.6	1
149	Synthesis and Structure of Carbon/Silica Hybrid Aerogels. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 690-694.	0.6	1
150	Scalable Preparation and Microwave Absorption of Lightweight Fe ₃ O ₄ /Mesoporous Carbon Microsphere Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2017, 32, 1023.	0.6	0