
## Yves Ferro

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3917814/publications.pdf Version: 2024-02-01



YVES FEDDO

| #  | Article                                                                                                                                                                                                 | IF                      | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|
| 1  | Modelling tritium adsorption and desorption from tungsten dust particles with a surface kinetic model. Nuclear Fusion, 2021, 61, 086030.                                                                | 1.6                     | 12                 |
| 2  | Predictive Atomistic Model for Hydrogen Adsorption on Metal Surfaces: Comparison with Low-Energy<br>Ion Beam Analysis on Tungsten. Journal of Physical Chemistry C, 2021, 125, 16086-16096.             | 1.5                     | 8                  |
| 3  | D retention and material defects probed using Raman microscopy in JET limiter samples and beryllium-based synthesized samples. Physica Scripta, 2021, 96, 124031.                                       | 1.2                     | 2                  |
| 4  | Modelling of hydrogen isotopes trapping, diffusion and permeation in divertor monoblocks under ITER-like conditions. Nuclear Fusion, 2021, 61, 126003.                                                  | 1.6                     | 9                  |
| 5  | Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms.<br>Nuclear Fusion, 2020, 60, 106011.                                                                      | 1.6                     | 11                 |
| 6  | A density functional theory based thermodynamic model of hydrogen coverage on the W(110) surface.<br>Physica Scripta, 2020, T171, 014025.                                                               | 1.2                     | 6                  |
| 7  | Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT. Journal of<br>Nuclear Materials, 2019, 524, 323-329.                                                          | 1.3                     | 11                 |
| 8  | Surface coverage dependent mechanisms for the absorption and desorption of hydrogen from the<br>W(1 1 0) and W(1 0 0) surfaces: a density functional theory investigation. Nuclear Fusion, 20           | 19, <sup>1</sup> 59, 10 | 60 <del>2</del> 5. |
| 9  | Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions. Journal of Physics Condensed Matter, 2018, 30, 135001.                                 | 0.7                     | 15                 |
| 10 | Saturation of tungsten surfaces with hydrogen: A density functional theory study complemented by<br>low energy ion scattering and direct recoil spectroscopy data. Acta Materialia, 2018, 145, 388-398. | 3.8                     | 36                 |
| 11 | Identification of BeO and BeOxDy in melted zones of the JET Be limiter tiles: Raman study using comparison with laboratory samples. Nuclear Materials and Energy, 2018, 17, 295-301.                    | 0.6                     | 20                 |
| 12 | Reaction-diffusion modeling of hydrogen transport and surface effects in application to single-crystalline Be. Nuclear Instruments & Methods in Physics Research B, 2018, 430, 23-30.                   | 0.6                     | 27                 |
| 13 | Hydrogen in beryllium oxide investigated by DFT: on the relative stability of charged-state atomic versus molecular hydrogen. Journal of Physics Condensed Matter, 2018, 30, 305201.                    | 0.7                     | 8                  |
| 14 | Hydrogen supersaturated layers in H/D plasma-loaded tungsten: A global model based on<br>thermodynamics, kinetics and density functional theory data. Physical Review Materials, 2018, 2, .             | 0.9                     | 22                 |
| 15 | Preparing the future post-mortem analysis of beryllium-based JET and ITER samples by<br>multi-wavelengths Raman spectroscopy on implanted Be, and co-deposited Be. Nuclear Fusion, 2017, 57,<br>076035. | 1.6                     | 10                 |
| 16 | Contribution to a better evaluation of the dust speciation in case of an accident in ITER. Fusion Engineering and Design, 2017, 124, 1171-1176.                                                         | 1.0                     | 4                  |
| 17 | Theoretical investigation on the point defect formation energies in beryllium and comparison with experiments. Nuclear Materials and Energy, 2017, 12, 453-457.                                         | 0.6                     | 14                 |
| 18 | Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.                                 | 1.6                     | 75                 |

Yves Ferro

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Study of hydrogen isotopes behavior in tungsten by a multi trapping macroscopic rate equation model. Physica Scripta, 2016, T167, 014011.                                                                             | 1.2 | 27        |
| 20 | Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models. Acta Materialia, 2015, 94, 307-318.                                                            | 3.8 | 174       |
| 21 | First-Principles Study of hydrogen retention and diffusion in beryllium oxide. Solid State Ionics, 2015, 272, 91-100.                                                                                                 | 1.3 | 20        |
| 22 | Hydrogen retention in beryllium: concentration effect and nanocrystalline growth. Journal of<br>Physics Condensed Matter, 2015, 27, 475401.                                                                           | 0.7 | 15        |
| 23 | The interaction of beryllium with benzene and graphene: a comparative investigation based on DFT, MP2, CCSD(T), CAS-SCF and CAS-PT2. Physical Chemistry Chemical Physics, 2014, 16, 1957-1966.                        | 1.3 | 11        |
| 24 | Hydrogen retention and diffusion in tungsten beryllide. Journal of Physics Condensed Matter, 2014,<br>26, 315012.                                                                                                     | 0.7 | 11        |
| 25 | Absorption and diffusion of beryllium in graphite, beryllium carbide formation investigated by density functional theory. Journal of Applied Physics, 2013, 113, 213514.                                              | 1.1 | 16        |
| 26 | Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated<br>by DFT. Journal of Physics Condensed Matter, 2013, 25, 015002.                                               | 0.7 | 13        |
| 27 | Isotopic effects in the sticking of H and D atoms on the (0 0 0 1) graphite surface. Chemical Physics<br>Letters, 2009, 477, 225-229.                                                                                 | 1.2 | 10        |
| 28 | Evidence of hydrogenated hexamers on graphite. Chemical Physics Letters, 2009, 478, 42-44.                                                                                                                            | 1.2 | 14        |
| 29 | Stability and magnetism of hydrogen dimers on graphene. Physical Review B, 2008, 78, .                                                                                                                                | 1.1 | 103       |
| 30 | Model for thermal desorption of hydrogen atoms from a graphite surface based on kinetic Monte<br>Carlo simulations. Physical Review B, 2008, 77, .                                                                    | 1.1 | 22        |
| 31 | Interpretation of STM images of graphite with an atomic vacancy via density-functional calculations of electronic structure. Physical Review B, 2007, 75, .                                                           | 1.1 | 21        |
| 32 | Experimental and Theoretical UV Characterizations of Acetylacetone and Its Isomers. Journal of Physical Chemistry A, 2006, 110, 3920-3926.                                                                            | 1.1 | 51        |
| 33 | Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface. Carbon, 2006, 44, 3320-3327.                                                                                                  | 5.4 | 107       |
| 34 | Hydrogenation and dehydrogenation of graphite (0001) surface: a density functional theory study.<br>Physica Scripta, 2006, T124, 91-95.                                                                               | 1.2 | 30        |
| 35 | Hydrogen adsorption on graphite (0001) surface: A combined spectroscopy–density-functional-theory<br>study. Journal of Chemical Physics, 2005, 123, 124701.                                                           | 1.2 | 55        |
| 36 | Electron solvation by polar molecules:â€,The interaction of Na atoms with solid methanol films studied<br>with MIES and density functional theory calculations. Journal of Chemical Physics, 2004, 120,<br>8692-8697. | 1.2 | 12        |

Yves Ferro

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electron solvation by highly polar molecules: Density functional theory study of atomic sodium interaction with water, ammonia, and methanol. Journal of Chemical Physics, 2004, 120, 8683-8691.                                 | 1.2 | 27        |
| 38 | Electron delocalization by polar molecules: Interaction of Na atoms with solid ammonia films studied with MIES and density functional theory. Journal of Chemical Physics, 2004, 121, 3717-3721.                                 | 1.2 | 2         |
| 39 | Quantum study of hydrogen–oxygen–graphite interactions. Carbon, 2004, 42, 3189-3198.                                                                                                                                             | 5.4 | 44        |
| 40 | Electronic transitions and resonance electron scattering measured by electron energy loss spectroscopy of lead phthalocyanine thin film. Thin Solid Films, 2004, 466, 259-264.                                                   | 0.8 | 15        |
| 41 | Theoretical study of oxygen adsorption on boron-doped graphite. Surface Science, 2004, 559, 158-168.                                                                                                                             | 0.8 | 28        |
| 42 | Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces.<br>Journal of Chemical Physics, 2004, 120, 11882-11888.                                                                          | 1.2 | 58        |
| 43 | Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chemical Physics Letters, 2003, 368, 609-615.                                                                             | 1.2 | 122       |
| 44 | UV and IR photoisomerizations of an intramolecularly H-bonded molecule: acetylacetone trapped in nitrogen matrix. Chemical Physics Letters, 2003, 370, 118-125.                                                                  | 1.2 | 21        |
| 45 | Density functional study of chemical erosion mechanisms in carbon and boron-doped carbon as plasma facing material in tokamaks. Journal of Nuclear Materials, 2003, 321, 294-304.                                                | 1.3 | 14        |
| 46 | Sodium hydroxide formation in water clusters: The role of hydrated electrons and the influence of electric field. Journal of Chemical Physics, 2003, 118, 10461-10469.                                                           | 1.2 | 30        |
| 47 | Self-assembled molecular chains formed by selective adsorption of lead–phthalocyanine on<br>InSb(100)-(4×2)/c(8×2). Applied Physics Letters, 2003, 82, 2518-2520.                                                                | 1.5 | 26        |
| 48 | Density functional theory investigation of H adsorption on the basal plane of boron-doped graphite.<br>Journal of Chemical Physics, 2003, 118, 5650-5657.                                                                        | 1.2 | 49        |
| 49 | Density functional theory investigation of H adsorption and H2 recombination on the basal plane and<br>in the bulk of graphite: Connection between slab and cluster model. Journal of Chemical Physics,<br>2002, 116, 8124-8131. | 1.2 | 120       |
| 50 | Adsorption of NH3 on MgO(100): a comparative study of ab initio and semi-classical calculations.<br>Surface Science, 1995, 325, 139-150.                                                                                         | 0.8 | 48        |